

Norwegian Tunnel Safety Conference

Stavanger, Norway, June 18th-19th 2018

New studies on

New Energy Carriers

Maximilian Wietek

ILF Consulting Engineers Austria GmbH

ITA-COSUF Chair

Norwegian Tunnel Safety Conference

Stavanger, Norway, June 18th-19th 2018

ITA-COSUF

the Committee on Operational Safety of Underground Facilities

of the International Tunnelling and Underground Space
Association

Maximilian Wietek, ITA-COSUF Chair

SEARCH Search ...

ABOUT ITA ? MEMBERS & LINKS PUBLICATIONS FUTURE EVENTS WG & COMMITTEES PRESS ROOM

Working Groups ITAtech ITACUS ITA-CET ITA-COSUF Young Members

WG & COMMITTEES

We have many activities, divided into:

- 22 Working groups
- 4 Committees
- Young Members

ITA Supporting Organisations

> The first committee of ITA

founded in 2005 GA Istanbul

Supported by PIARC

the World Road Association

- Memorandum of Understanding (PIARC/ITA):
 - ITA and PIARC activities are co-ordinated
 - PIARC represented in COSUF Steering Board
 - COSUF represented in PIARC Committee
 D.5 "Road Tunnel Operation"

ITA-COSUF

A joint initiative of 8 European research projects (FP5 / FP6)

Memorandum of Understanding, represented in Steering Board

ITA-COSUF – Strategic Positioning

Scope Covers all underground facilities

Members Authorities, consultants, academia,

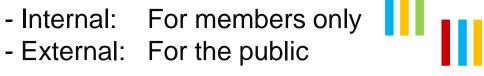
industry, contractors, operators,

safety officers, etc.

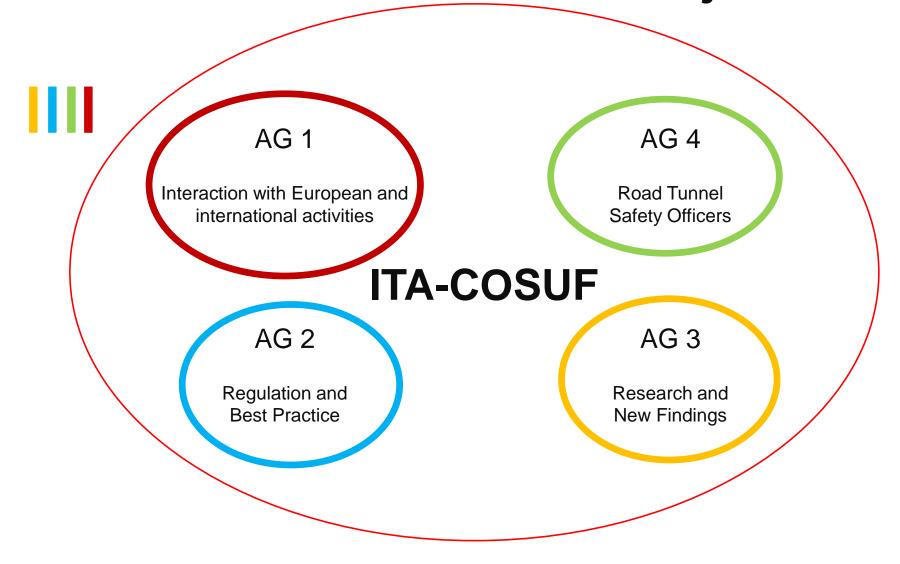
Focus
Underground safety & security

ITA-COSUF is THE platform for communication on operational safety & security

Main Objectives


- Exchange knowledge
 - Facilitate <u>cooperation</u>
- Enhance R&D activities through combining national, European and international funding and support
- Promote Safety & Security through
 - Fostering <u>innovation</u>
 - Raising <u>awareness of Safty & Security</u> issues
 - Supporting the development of <u>new regulations</u>

Resulting activities

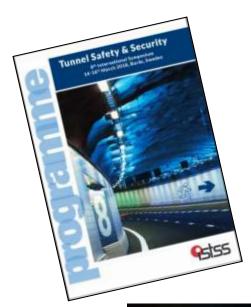

- Workshops:
 - External: For the public

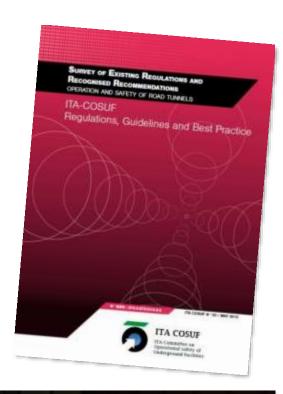
- Papers & Reports: Position papers
 - Recommendations and Guidelines
- Master Theses & Research Reports
- Award for young researchers
- Training with ITA-CET
- Endorsement of 3rd party events (related topics, non-commercial)

and how to achieve these objectives

ITA-COSUF – Activity Groups

- > 4 AGs are open to all ITA-COSUF members
- 2 meetings per year at ITA-COSUF workshops
 - AG 1: Interaction with European and international activities
 - **AG 2:** Regulations and best practice
 - AG 3: Research and new findings
 - **AG 4:** Road Tunnel Safety Officers


More information: www.ita-cosuf.org



ITA-COSUF – Results

- Publications
- Workshops
- > TSO Forums
- Endorsements

ITA-COSUF – Publications

Engineering Methodology for Performance-Based Fire Safety Design of Underground Rail Systems

- Survey of Existing Regulations and Recognised Recommendations (on Operation and Safety of Road Tunnels)
- Best Practice Recommendations on Cross-Passage Design to Assure Safety in Rail and Metro Tunnels (in preparation)

ITA-COSUF - Private Workshops

One private workshop per year

(for members only)

Operating Road and Rail Tunnels in Helsinki

Presentations and visits of the operation center of the Finnish Transport Agency, the western extension of the Helsinki Metro, visit to a new metro station

ITA-COSUF – Public Workshops

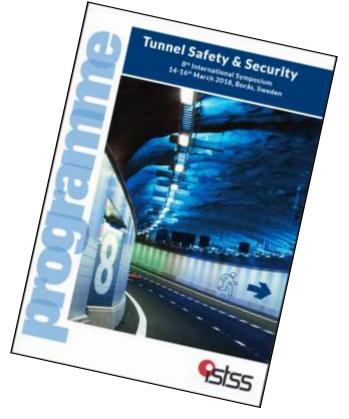
AFTES Conference, Paris, 13th – 15th Nov. 2017

Workshop on "Operational Issues"

Round Table Discussion "Designing, Operating and Upgrading Complex Underground Hubs"

ITA-COSUF – TSO Forums

- ➤ 4th European Road Tunnel Safety Officers Forum (2016, Rotterdam)
- ➤ 5th European Road Tunnel Safety Officers Forum (2018, Madrid)



Other events endorsed by ITA-COSUF

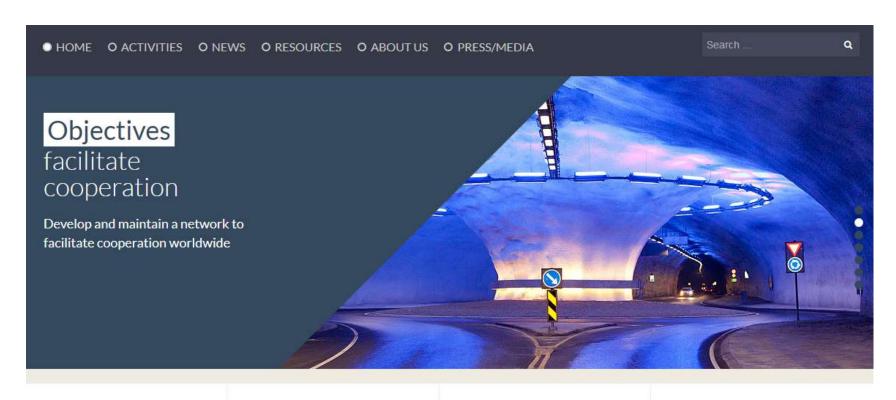
ISTSS 2018, Boras, 14th-16th March 2018

International Symposium on Tunnel Safety and Security

PIARC International
Conference on road tunnel
operations and safety,
Lyon, 3rd-5th October 2018
PIARC Technical Committee D.5
(Road Tunnel Operations)

ITA-COSUF – Future Activities

Joint PIARC + COSUF Event


Conference on "Road Tunnel Operations and Safety"

3rd – 5th October 2018, Lyon (FR)

ITA-COSUF - website: ita-cosuf.org

Activity Group 1
INTERACTION WITH
EUROPEAN & INTERNATIONAL
ACTIVITIES. Keeps contact with
other external institutions, groups
and projects in order to receive
relevant information, to cooperate

Activity Group 2
REGULATIONS & BEST
PRACTICE. Covers regulations,
the state-of-the-art and
best-practices internationally.
This includes discussion and
comparison of regulations, norms,

Activity Group 3
RESEARCH & NEW
FINDINGS. Provide a platform for the exchange of knowledge in the scope of underground safety and security by bringing together the key stakeholders from academia,

Activity Group 4
ROAD TUNNEL SAFETY
OFFICERS. Aims to be the
Platform for European tunnel
safety Officers for Exchange of
experiences through its biannual
Forum and Development of best

ITA-COSUF – Award

- ➤ 2015 Winner: Karl Fridolf (28) for his thesis on "Evacuation in Rail Tunnels"
- ➤ 2016 Winner: Wilson Rojas (26) for his thesis on "Ventilation Control in Tunnels using Helium-Technique in a small-scale models"
- > 2017: No thesis awarded
- > 2018: Call for theses open!

"Sicherheit in unterirdischen städtischen Verkehrsbereichen bei Einsatz neuer Energieträger"

"Safety of New Energy Carrier Vehicles in urban underground transportation infrastructure"

FKZ: 13N14393

SUVEREN

New Energy Carriers – an issue for Railways, too?

Consortium - Partners

BAM

Bundesanstalt für Materialforschung und -prüfung

FOGTEC

FOGTEC Brandschutz GmbH & Co. KG

STUVA

Studiengesellschaft für Tunnel und Verkehrsanlagen e.V.

Consortium – Associated Partners

DB Station & Service AG

Feuerwehr München

CETU

Centre d'Etudes des Tunnels

INERIS

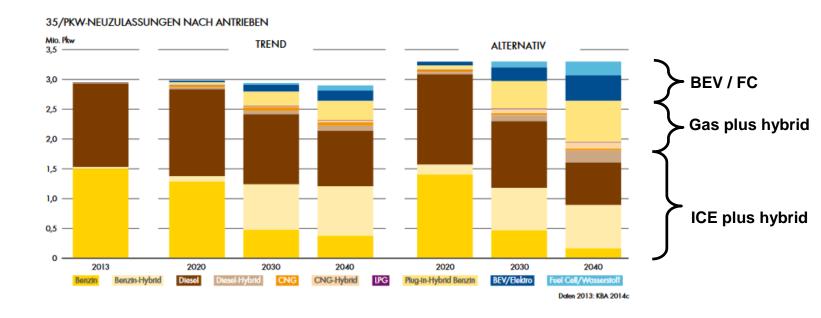
Institut national de l'environnement industriel et des risques

Why SUVEREN?

1. New Energy Carrier Vehicles on the market

2. New Scenarios for safety assessment

3. Need for holistic safety assessment


1. New Energy Carrier Vehicles on the market

Acronym	Type of NEC Vehicle	
BEV	Battery Electric Vehicles	
CNG	Compressed Natural Gas Vehicles	
FCEV	Hydrogen Fuel Cell (Electric) Vehicles	
LPG	Liquified Petroleum Gas Vehicles	
PHEV	Plug in Hybrid Electric Vehicles	

1. New Energy Carrier Vehicles on the market

62 SHELL PKW-SZENARIEN BIS 2040

1. NEC – What is changing or new?

	Name		
Fuel	Diesel	Tyles	ting viels
	Petrol	EXIS	ting risks
Gas	Dimethyl Ether (DME))	
	LPG (Propane)	New	risks in terms of
	CNG/LNG (Methane)		Toxic gases Fire
	Hydrogen		Explosions
Batteries	Lithium-Ion (Li-Po?)	J	

1. NEC – What is changing or new?

	Name	Rel. density	
Fuel	Diesel	7.0	
	Petrol	3.5	
Gas	Dimethyl Ether (DME)	1.6	1
	LPG (Propane)	1.56	1
	CNG/LNG (Methane)	0.6	1
	Hydrogen	0.1	1
Batteries	Lithium-Ion (Li-Po?)		

1. NEC – What is changing or new?

Operational apsects:

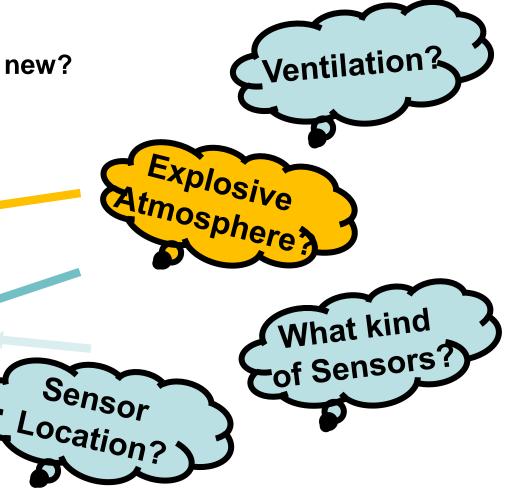
Flowing into sewer systems

Gas accumulation

- on the floor

- under the ceiling

Rel. density	
7.0	liquid
3.5	liquid
1.6	1
1.56	1
0.6	1
0.1	1


1. NEC – What is changing or new?

Operational apsects:

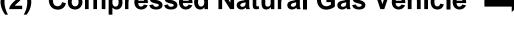
Flowing into sewer systems

Gas accumulation

- on the floor
- under the ceiling

2. New Scenarios for safety assessment

- (1) Battery Electric Vehicle
- (2) Compressed Natural Gas Vehicle
- (3) E-Bus at Terminal
- (4) Storage of Batteries in enclosed spaces



2. New Scenarios for safety assessment

(1) Battery Electric Vehicle

(2) Compressed Natural Gas Vehicle

(3) E-Bus at Terminal

Subscenario 1.1: Lithium-Ion-Battery Fire

Subscenario 1.2: BEV Fire

Subscenario 1.3: BEV next to another car on fire

Subscenario 1.4: BEV on fire next to Fuel Cell vehicle

Subscenario 2.1: Collision and Fire

Subscenario 2.2: Collision, no Fire, Gas leakage

Subscenario 2.3: Collision and Fire, Gas leakage

Subscenario 2.4: Jet-flame and Water Mist

Subscenario 3.1: Bus Fire front part

Subscenario 3.2: Bus Fire rear part bottom

Subscenario 3.3: Bus Fire rear part top

Subscenario 3.4: Busses and different SOCs

2. New Scenarios for safety assessment

(1) Battery Electric Vehicle

(2) Compressed Natural Gas Vehicle

(3) E-Bus at Terminal

(4) Storage of Batteries in enclosed spaces

Subscenario 1.1: Lithium-Ionen-Battery Fire

Subscenario 1.2: BEV Fire

Subscenario 1.3: BEV next to another car on fire

Subscenario 1.4: BEV on fire next to Fuel Cell vehicle

Subscenario 2.1: Collission and Fire

Subscenario 2.2: Collission, no Fire, Gas leakage

Subscenario 2.3: Collission and Fire, Gas leakage

Subscenario 2.4: Jet-flame and Water Mist

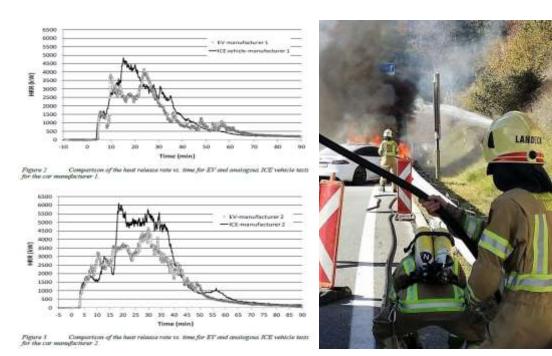
Subscenario 3.1: Bus Fire front part

Subscenario 3.2: Bus Fire rear part bottom

Subscenario 3.3: Bus Fire rear part top

Subscenario 3.4: Busses and different SOCs

(1) Battery Electric Vehicle


Source: Website Fire Brigade Landeck, Austria

Situation awareness:

- What kind of car?
- In case of a tunnel fire: How to identify the type of car?
- Impact on strategy?

(1) Battery Electric Vehicle

Source: Website Fire Brigade Landeck, Austria

HRR comparison:

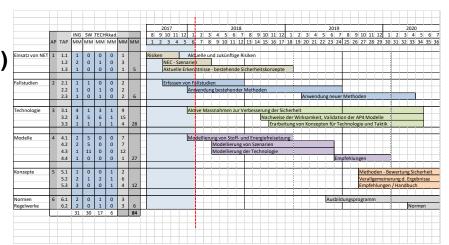
- How big is the difference?
- How to measure HRR?
- Impact on
 - Users?
 - Tactics?
 - Structures?

- (3) E-Bus at Terminal
- Geometries of busses and infrastructure?
- Charging technology and sensor location?

(3) E-Bus at Terminal

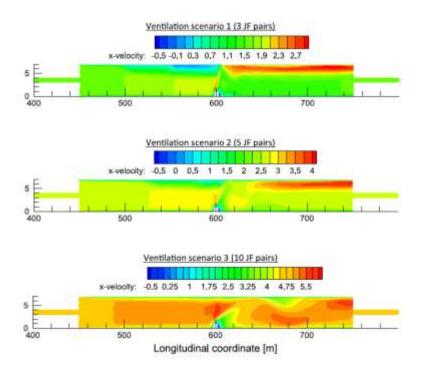
Case Study development with support of

- Operational aspects
- Ventilation
- Charging and stored energy
- Sensors
- Fire protection systems



3. Need for holistic safety assessment

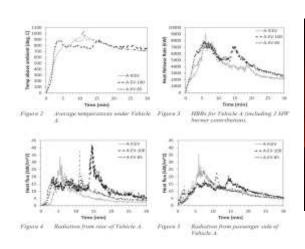
- (1) NEC Risks
- (2) Case Studies
- (3) Technology (detection, mitigation)
- (4) 3D Modelling
- (5) Safety Concepts, Handbook
- (6) Standards, Trainings

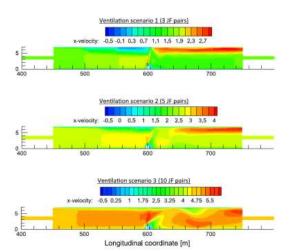


3. Need for holistic safety assessment

Modelling

- energy release of new energy carriers
- risk scenarios
- technologies to mitigate damages


Recommendations for modelling new energy carrier risks



3. Need for holistic safety assessment

Validation of Model Simulations

3. Need for holistic safety assessment

Drawing conclusions:

- Discussion with Advisory Board
- ITA-COSUF Workshops on New Energy Carrier Vehicles Spring 2019 (Committee on Operational Safety of Underground Facilties)
- Discussion with European Tunnel Safety Officers (TSO Forum May 2018, Madrid)

3. Need for holistic safety assessment

Drawing conclusions and contribute with

- Guidelines
- Handbook for designers, owners, operators and first responders

to the safe use of

New Energy Carrier Vehicles

Project title

E-mobility and tunnel safety

Partner

Amstein + Walthert, Zurich, Switzerland
Hagerbach Test Gallery, Flums, Switzerland
CETU - Centre d'Etudes des Tunnels

Topic

Reaction of energy storage devices in Battery Electric Vehicles

In case of

- Fire
- Collission
- Shortcut
- Malfunction during charging

Chemical products of Lithium-Ion-battery fire

Fokus: Thermal Runaway

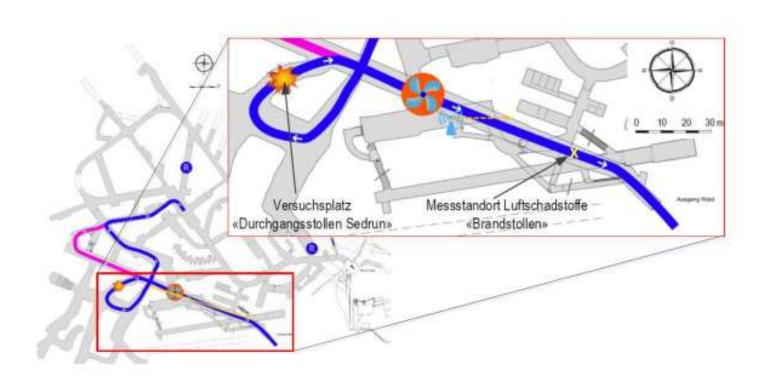
Mögliche Zersetzungsprodukte während eines Lithium-lonen-Batteriebrandes

Stoff: Formel: Bemerkung:

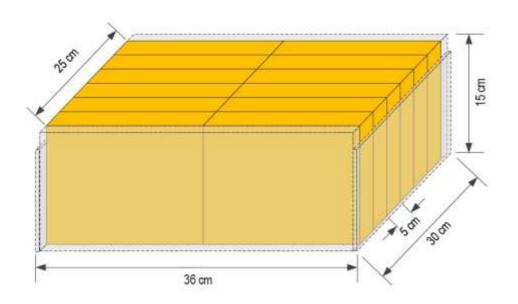
Fluorwasserstoff HF toxisch

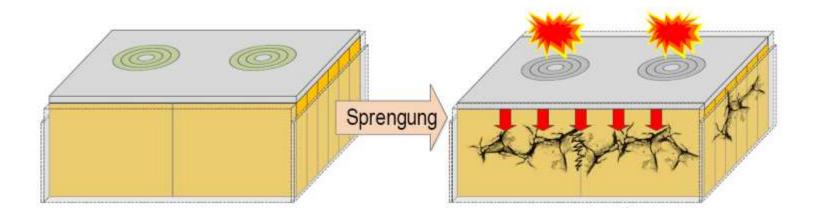
Phosphoroxidfluorid POF3 Phosphorsäure H3PO4

VOC

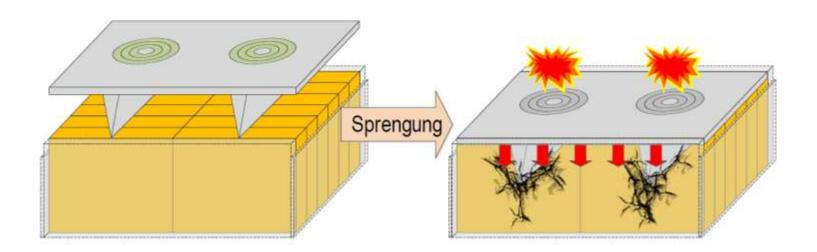

Monophosphan PH3 toxisch

Schwermetallaerosole Li, Co, Mn toxisch, persistent

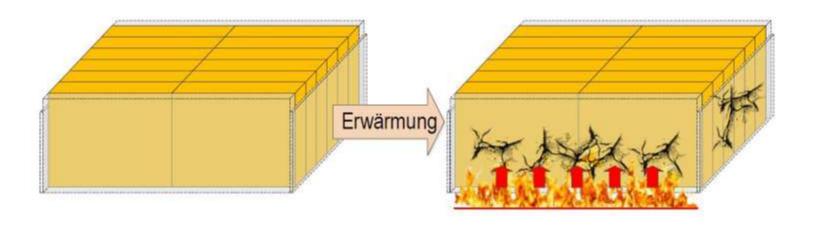

Versuchsort



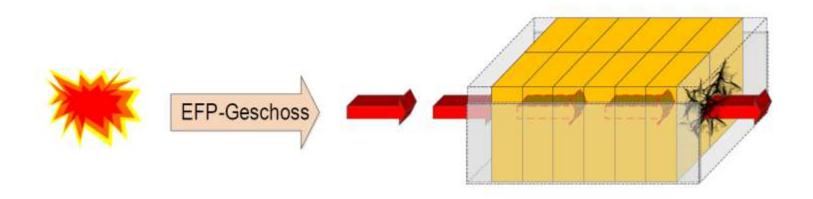
Test series Battery Pack



Versuch 1: Stumpfer Schlag



Versuch 2: Schlag mit Penetration



Versuch 3: Erwärmung

Versuch 4: Penetration

Results

Parameter	Versuch 1 («Keil»)	Versuch 2 («Platte»)	Versuch 3 ¹¹ («Durchschuss»)	Versuch 4 («Brand»)
PH ₃ [g]	< 0.4		< 0.4	
F ⁻ als HF [g]	1.1	3.1	< 1	< 0.5
PO ₄ -P ais H ₃ PO ₄ [g]	< 1.5	< 1.5	11.3	< 1
Co [g]	457	567	190	364
Li [g]	107	124	42	92
Mn [g]	445	536	184	349
F Aerosol [g]	152	160	68	126
NO [g] ¹²	0.8	1.1	0.1	1.5
NO ₂ [g] ¹²	0.4	0.2	0.2	0.6
CO [g] ¹²	76	181	97	141
CO ₂ [g] ¹²	8'450	5'980	1'930	7'760
TVOC [g]	20	196	93	32
∑ Aromate [g]	1.6	8.6	3.2	3.1
Renzoi Inl	11	3	1.6	17

