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Kurzfassung

Numerische Methoden beruhen meist auf netzbasierten Verfahren, sogenannten Finiten
Elementen (FE). Neben experimentellen und theoretischen Verfahren spielen diese seit
langem eine wichtige Rolle in der Analyse von Problemen der Mechanik. Eine Schwach-
stelle der klassischen netzbasierten Methoden liegt in der eingeschränkten Möglichkeit
große Verformungen zu simulieren. Besonders im Bereich der Bodenmechanik treten
bei vielen Fragestellungen große Verformungen auf. Im Gegensatz zu den netzbasierten
Verfahren sind netzfreie Verfahren nicht auf feste Nachbarschaften zwischen den mate-
riellen Punkten angewiesen und sollten sich daher besser zur Behandlung von großen
Verformungen eignen. Im Zuge dieser Arbeit wird der Soft Particle Code (SPARC), ei-
ne netzfreie Methode, zur Simulierung einer Vielzahl von numerischen Problemen der
Bodenmechanik, herangezogen. Es werden unterschiedliche Laborversuche, Scherfu-
genbildungen, Fundamentbelastungen, Drucksondierungen, Turbulenzen in granularen
Feststoffen und die Bildung ptygmatischer Faltungen simuliert. Die Beschreibung der
Spannungs-Dehnungsbeziehung erfolgt dabei mit den nichtlinearen Entwicklungsglei-
chungen der Hypoplastizität und der Barodesie. Da numerische Ergebnisse ohne eine Va-
lidierung anhand von Experimenten und Theorien keine Aussagekraft haben, werden die
durch SPARC erhaltenen Ergebnisse zusätzlich mit experimentellen Daten verglichen.
Ein wesentlicher Fokus dieser Arbeit liegt auf den Verbesserungen vom Soft Particle Co-
de, wie z.B. der Rekonditionierung der Lösung, der Definition glatter Randbedingungen
und der Berücksichtigung der konvektiven Beschleunigung. Darüber hinaus werden auch
eine Reihe von Verbesserungsversuchen vom SPARC ausgeführt. Die Darstellung sowie
die ausführliche Erklärung dieser Versuche kann für die zukünftige Forschung nützlich
sein.
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Abstract

Numerical methods were first applied for solving engineering problems by introducing
the mesh-based method of Finite Elements (FE). Since the emergence of FE methods, nu-
merical approaches have been playing a supporting role along theory and experiment in
analysis of mechanics problems. One of the deficiencies of standard mesh-based methods
is their difficulty in simulating large deformations, which are the case for most problems
in soil mechanics. Contrary to mesh-based methods, the meshfree approaches do not nec-
essarily entail connectivities between the material points and should, therefore, be more
appropriate for problems associated with large deformations. In this work, a straightfor-
ward meshfree method, the Soft Particle Code, is introduced and further developed for
simulation of a number of problems in soil mechanics. The simulations comprise conven-
tional laboratory tests, formation of shear bands, punching, cone penetration, turbulence
in granular solids and formation of ptygmatic folds. The non-linear evolution equations
of hypoplasticity and barodesy are employed for describing the stress-strain relationship.
A number of code improvements, such as reconditioning the solution, defining smooth
boundary condition and consideration of convective acceleration, which were achieved
in the scope of this work played a key role in successful simulation of some of the above
mentioned problems. In addition, several unsuccessful attempts were made to improve
SPARC which are of practical value for future research. Therefore, an elaborate ex-
planation of all the unsuccessful attempts is provided as well. Finally, since numerical
results without validation against experiments and theories are blind and of little worth,
the results delivered by SPARC are compared and validated against experimental data.
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List of Symbols and Abbreviations

A list of more common symbols, abbreviations and operators in the text is offered here.
All symbols (whether listed here or not) are also well defined in the text.

b acceleration vector

B width of foundation

Cc curvature of grain size distribution curve

Cu coefficient of non-uniformity

d grid space (average distance between two particles)

dp penetration depth

d50 mean grain size (characteristic grain size)

d10, d30, d60 characteristic grain size

D maximum diameter of the cone

D stretching tensor

D f embedment depth of foundation

∆γs maximum incremental shear strain

∆t time increment

e void ratio

ė time derivative of void ratio

e0 initial void ratio

ec critical state void ratio (pressure dependent)

emax maximum void ratio

emin minimum void ratio, emin in Tab. A.2 is a material constant

en unit normal vector to the surface

er unit vector in r direction

et unit tangential vector of the surface

xv



xvi LIST OF SYMBOLS AND ABBREVIATIONS

ex unit vector in x-direction

ez unit vector in z-direction

ε accepted tolerance (error)

εεε strain tensor

ε1, ε2, ε3 first, second and third principal strains, respectively

εv volumetric strain

||ε||2 Euclidean (2-Norm) of absolute error

||ε||∞ Chebyshev (∞-Norm) of absolute error

g gravitational acceleration vector

γ unit weight of soil

γ̇s maximum shear rate

k Newton solver iteration number

K Jacobian matrix

K0 lateral earth pressure coefficient at rest

κ∗ slope of the unloading line under isotropic normal compression in log-
arithmic demonstration

λ ∗ slope of the isotropic normal compression line in logarithmic demon-
stration

LP linear polynomial interpolation without a constant term

LPC linear polynomial interpolation with a constant term

N ordinate intercept of the isotropic normal compression line in logarith-
mic demonstration

np number of particles

∇ gradient operator

∇· divergence operator

p prescribed pressure (traction) to the surface

ϕ friction angle

ϕc critical friction angle

ϕp peak friction angle

q surcharge stress

Q bearing capacity

Qult ultimate bearing capacity



xvii

r radius of circle of neighbor search (support size)

RPIM radial point interpolation method

(r, ϑ , z) cylindrical coordinate system

r vector of residuum of the governing equation

ρ density

ρ̇ time derivative of density

ρn numerical density

ρs grain mass density

t time step

t stress vector (traction)

T effective Cauchy stress tensor

T̊ objective rate of Cauchy stress tensor

Ṫ time derivative of Cauchy stress tensor

T1, T2, T3 first, second and third principal stresses, respectively

trX sum of diagonal components of a tensor

u pore water pressure

v velocity vector

vp upper plate velocity

v̄ mean velocity

v′ fluctuation of velocity

Q rotation matrix

W spin tensor

(x, y, z) Cartesian coordinate system

x position vector

|X| Euclidean norm of a tensor, |X|=
√

trX2

X0 normalization of a tensor X0 = X/|X|
y any of the governing equations

y vector of all governing equations





1 Soft PARticle Code

The basics of the meshfree numerical method implemented in the code SPARC and its
further developments in the scope of this study are explained in this chapter. Further-
more, a comprehensive investigation regarding the quality of interpolation methods for
the determination of spatial derivatives is conducted. Interested readers can refer to Chen
[11] and Polymerou [42] for further details about the development and application of
SPARC.

1.1 Discretization

In SPARC the continuum with unlimited number of degrees of freedom is discretized by
a limited number material points (see Fig. 1.1), the so-called soft particles. At time t, for
each particle, position x and the field variables such as velocity v, density ρ (or void ratio
e) and the stress state T are known.

Continuum

Discretization

infinite dof

Soft Particles
(Material points)

finite dof

Figure 1.1: Discretization of continuum into a finite number of material points, ”soft
particles”

1
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z

Txx

Tyy

Tyz

Tzz

Tzy

Tzy = Tyz

x

y

z

εyy

εyz

εzz

εzy

εzy = εyz

Figure 1.2: Coordinate system and the plane strain condition in x-direction, left: stress
tensor T, right: strain tensor εεε

1.2 Coordinate system and plane strain condition

In this study, the simulations are conducted 2D in x-plane with plane strain condition, i.e.
no displacement in in x- direction (see Fig. 1.2)1. As a result of the plane strain condition,
the shear stresses and all components of the strain on x-plane vanish. Therefore, the stress
and strain tensors read,

T =











Txx 0 0

0 Tyy Tyz

0 Tzy Tzz











, εεε =











0 0 0

0 εyy εyz

0 εzy εzz











.

Sign convention. When a normal component of the stress or strain tensor (e.g. Tyy or
εyy) is positive, it means that the normal component acting on the right side pulls to the
right and the normal component on the left side pulls to the left and consequently it is a
tensile stress. Analogously, when a normal component is negative, it is compressive. The
sign of tangential components (e.g. Tyz and εyz) has no intrinsic physical meaning and a
positive tangential component represents an upward-acting vector on the right side and a
downward-acting component on the left side, Malvern [35].
Effective stresses. For all the simulations in this study, the soil is considered to be dry
and therefore, pore water pressure (u) is equal to zero and T represents the effective
stress tensor.

1.3 Governing equations

Particles are divided in SPARC into two groups, field particles, at which the Cauchy
equation of motion applies (Eq. 1.1),

∇ ·T+ρg = 0, (1.1)

and the boundary particles. The boundary particles have either kinematic boundary con-
ditions with prescribed velocities or static boundary conditions. The static boundary

1Only the simulations of Secs. 2.1 to 2.6 are conducted in 3D, (x, y, z) space.
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t · e
t

t = T · en

en

et

smooth surface

T

en

t = T · en T

p

prescribed pressure

Figure 1.3: Demonstration of vectors for calculation of boundary condition with pre-
scribed pressure p (left) and smooth boundary (right), t = T · en is the stress vector

z

z

x

x

y

y

Figure 1.4: Schematic demonstration of biaxial test apparatus

condition in case of prescribed pressure (traction) is,

T · en − (−p) · en = 0, (1.2)

where en is the normal unit vector on the surface and p is the pressure (see Fig. 1.3,
left). In case of smooth boundary (particles in contact with smooth elements such as
walls, cone and etc.), the following boundary condition is applied, which demands that
the shear stresses on the surface disappear (et is the tangential unit vector perpendicular
to en, see Fig. 1.3, right),

e⊺n ·T · et = 0. (1.3)

The boundary conditions and their implementation in SPARC are explained for a biaxial
test (see Fig.1.4). In Fig. 1.5, the boundary conditions for a 2D simulation of biaxial
test are demonstrated. For the particles adjacent to the membrane, subject to the constant
pressure p, the static boundary condition as described in Eq. 1.2 is applied. For the
particles lying on the end plates, in vertical direction the velocities are prescribed equal
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p p

vp

Figure 1.5: Schematic illustration of boundary conditions in a biaxial test

P

y

z

Figure 1.6: Neighbors of each particles are the particles lying within a circle of fixed
radius r around the particle

to vp for the upper plate and zero for the lower plate. However, for these particles,
the boundary condition in the horizontal direction is the smooth surface as explained in
Eq. 1.3. For the rest of the particles, which represent the field, the Cauchy equation of
motion (Eq. 1.1) is considered. The results of simulation of biaxial test with SPARC are
presented in Sec. 2.7.

1.4 Neighbor search and interpolation

In Fig. 1.6 the neighbors of particle P are shown. For each particle the neighbors, which
consists of particles lying within a circle of fixed radius around the particle, are searched.
By means of the neighbors, the spatial derivatives are calculated. The spatial derivatives
are the velocity gradient (∇v) and the divergence of the stress tensor (∇ ·T).
For a 2D problem the velocity in the horizontal direction, vy, is interpolated by Eq. 1.4,

vy = a1y+a2z, (1.4)

where the origin of the coordinate system is shifted to the location of the particle P (see
Fig. 1.6). The constants a1 and a2 are determined by least square method. Therefore, the



1.5. PROCEDURE OF SPARC 5

et

Tt

xt

ρ t
et+∆t

Tt+∆t

xt+∆t

ρ t+∆t

∆t

vt =?

Updated vt

Dt = 1
2

(

∇v+∇vT
)

Wt = 1
2

(

∇v−∇vT
)

Material model

T̊t = h (Tt , Dt ,et)

Ṫt = T̊t +WtTt −TtWt

Time integration

Tt+∆t = Tt + Ṫt ·∆t

Equations

∇ ·Tt+∆t +ρg = r1

Tt+∆t · en − (−p) · en = r2

e
⊺

n ·Tt+∆t · et = r3

Newton iteration |r1|+ |r2|+ |r3| ≤ ε

vt

Figure 1.7: Flow chart of SPARC

spatial derivatives for vy are,
∂vy

∂y
= a1,

∂vy

∂ z
= a2. (1.5)

The same interpolation is also applied to each component of the stress tensor, e.g. Tyy is
interpolated as,

Tyy = b1y+b2z, (1.6)

and like before, the spatial derivatives read,

∂Tyy

∂y
= b1,

∂Tyy

∂ z
= b2. (1.7)

The above procedure is applied to each component of velocities and stress of each particle
and consequently, at each time step, the velocity gradient ∇v and divergence of the stress
∇ ·T for each particle is calculated. For a more detailed description of the interpolation
procedure the reader is referred to Chen [11].

1.5 Procedure of SPARC

In Fig. 1.7, the framework of SPARC is summarized. At time step t, the position of
particles xt and the field variables, stress tensor Tt , void ratio et and density ρ t are known.
The velocities of particles vt are the unknowns. Once the velocities are found, all field
variables can be updated to the next time step t+∆t. In order to find the solution vt , a first
guess for the velocities is made and the velocity gradient as explained in Sec. 1.4 for each
particle is calculated. The symmetric part of velocity gradient, the so-called stretching
tensor D and the non-symmetric part, the spin tensor W are determined. By means of
the material model, the objective rate of stress state T̊t , as a function of the current stress
state, stretching tensor and void ratio is calculated. Furthermore, the Jaumann-Zaremba
relation is applied to obtain the time derivative of the stress. Afterwards, the stress is
updated to Tt+∆t .
In the next step, the governing equations are built for the field particles and also the
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boundary particles. The residua of the equations are calculated and compared with the
accepted tolerance (ε). Newton iteration method is implemented to solve the system of
non-linear equations.
After the velocity field vt is obtained, for which the governing equations are satisfied, the
field variables are updated as follows,

xt+∆t = xt +vt ·∆t,

Tt+∆t = Tt + Ṫt ·∆t,

et+∆t = et + ėt ·∆t,

ρ t+∆t = ρ t + ρ̇ t ·∆t,

where,
Ṫt = h (Tt , et , Dt)+WtTt −TtWt , (1.8)

ėt = (1+ et) ·
(

∇ ·vt
)

, (1.9)

and
ρ̇ t =−ρ t ·

(

∇ ·vt
)

. (1.10)

1.6 Newton solver

For solving the nonlinear system of equations, the iterative Newton method is employed
in SPARC. However, this method failed to converge for many of the problems presented
in this work after the deformations became large or localization of deformation occured.
As described in Fig. 1.7, in SPARC the velocities at time step (vt) are the unknowns.
Here we define n equal to the number of degrees of freedom, therefore, the matrix of
unknown velocities at time step t for the first iteration of the Newton solver, k = 1, can
be defined as,

vt
k=1 =

[

vt
i

]

i=1...n . (1.11)

The equations (y = 0), expressing either the boundary conditions (Eq.1.2 or Eq. 1.3) or
the Cauchy equation of motion (Eq. 1.1) are defined as,

y :=















∇ ·T+ρg

Tt+∆t · en − (−p) · en

e
⊺

n ·Tt+∆t · et















. (1.12)

For each degree of freedom, there is an equation y = 0 (Eq. 1.12) to be solved 2. All
equations are collected in the vector y,

y = [yi]i=1...n . (1.13)

2Theoretically, it is possible to have more than one equation for each degree of freedom, however, in
the scope of this study the Newton solver has never been able to find a solution which can simultaneously
satisfy two equations for one degree of freedom.
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The influence of each component of vi on yi in the k-th iteration of the Newton solver is
expressed by the Jacobian matrix and is calculated as,

Kk =

[

∂yi(v)

∂v j

]

i, j=1...n

. (1.14)

The Jacobian matrix is an n×n matrix, and is the most time consuming part of calcula-
tion. Therefore, the procedure is parallelized in SPARC so that each column is computed
in one individual central processing unit (CPU),

Kk =

























∂y1
∂v1

∂y1
∂v2

. . . ∂y1
∂vn

∂y2
∂v1

∂y2
∂v2

. . . ∂y2
∂vn

...
...

...
...

∂yn

∂v1

∂yn

∂v2
. . . ∂yn

∂vn

























[n×n]

. (1.15)

After the Jacobian matrix is calculated, its inversion is computed in order to update the
velocities to the (k+1)-th iteration of the solver,

vt
k+1 = vk −K−1

k y(vt
k). (1.16)

Afterwards, the field variables are updated with vt
k+1 with the relationships introduced in

Eqs.1.8 to 1.10 and the residua of the equations are compared with the accepted tolerance
(see Fig. 1.7). If the residuum is smaller than the tolerance, the solution is accepted and
the state variables are updated to the next time step. Otherwise, the Newton iteration is
repeated.

1.7 Tension control

In order to avoid tension, the following procedure is implemented in SPARC. It must
be noted that in SPARC the continuum mechanic convention for pressure and tension is
applied, by which the pressure is negative and tension is positive, (see Sec. 1.2).

1. At time step t +∆t, the stress state is updated for each particle,

Tt+∆t = Tt + Ṫt ·∆t,

where,
Ṫt = h (Tt , et , Dt)+WtTt −TtWt .

2. The principal stresses (T1,T1,T3) for each particle are calculated.
3. The eigenvectors for each particle are calculated and stored in the matrix Q, whose

columns are the corresponding eigenvectors.
4. The principal stresses (Ti) for i = 1 → 3 are controlled and,

if Ti ≥ 0,

then,
Ti =−1×10−3 kPa.
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5. The updated T is returned into the Cartesian coordinate system (x, y, z),

Tt+∆t = Q ·T · (Q)−1.

1.8 Reconditioning the solution

Throughout this study many different approaches were implemented in SPARC to im-
prove the performance of the solver. The most efficient approach is described here.
Let k be the number of iterations of the solver and t the time step, then the residuum of
the governing equation y = 0 at time step t after k iterations is rt

k. At each time step, the
governing equations y(v) = 0 are calculated and the goal is to minimize the residuum of
each equation. Theoretically, convergence of Newton solver means,

lim
k→∞

|rk
t | → 0. (1.17)

However, numerically we assume that the convergence after a finite number of iterations
is successful if,

|rk
t | ≤ ε, (1.18)

where ε is the prescribed tolerance. Should this not be achieved, the residuum at time
step t after r iterations, rk

t will be stored and added to the governing equation for the next
t +1 time step. This means that at time step t +1, the governing equation reads,

yt+1 = y+ rk
t = 0. (1.19)

This procedure can be applied to each time step, for which the Newton solver is not
capable of finding a solution unless the residuum is too large. The procedure proved
to be efficient in simulating the foundation settlement in Chp. 3. When the peak of the
load-settlement curve was reached (see Fig. 3.12), reconditioning of the solution for a
number of time steps helped to pass the peak and continue the simulation.

1.9 Comparison of interpolation methods

The interpolation methods play a crucial role in the quality of results and also the con-
vergence of the solver in SPARC. As explained in Sec. 1.4, interpolation is required in
SPARC for the calculation of velocity gradient and divergence of stress. For the simu-
lations with SPARC in this study, linear polynomial without a constant term (LP) and
with the least possible number of neighbors has proved to deliver the smoothest results
and better convergence for the solver and is applied for all simulations in this study. Be-
sides first order polynomial without the constant term, two other interpolation methods,
namely first order polynomial with the constant term (LPC) and radial point interpola-
tion method (RPIM) are also investigated. For a detailed implementation of radial point
interpolation method in SPARC, the reader is referred to Polymerou [42] and Liu et al.
[34]. In this chapter we investigate the accuracy and quality of the above-mentioned
interpolation in predicting the derivative of a function. It is important to mention, that
since in SPARC the spatial derivatives are of interest, evaluating the quality and accuracy
of an interpolation method in predicting the derivatives should be examined and not the
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Figure 1.8: Illustration of function 1.20 over the calculation domain

ability of the interpolation method in reproducing the function. For this purpose, two set
ups of particles are used, a regular distribution of particles and an irregular distribution
of particles. The derivatives are plotted against the analytical solution on the boundaries
of the domain and also in the middle of the domain.

1.9.1 Regular distribution of particles

The function 1.20 (illustrated in Fig. 1.8) is used as the reference function for our purpose
of evaluating the quality of the interpolation methods,

f = zsiny− ycosz. (1.20)

For comparison of the three interpolation methods, a regular distribution of over 2000
particles which equals to a grid space of 0.3 is created.

1.9.2 Results

The numerical derivatives are calculated and the results are compared with the analytical
solution. In order to offer a good demonstration of the results, the results are plotted
along three lines of the study domain, y = −5, z = −8 and y = 0 in the middle of the
domain (see the x-plane in Fig. 1.8). Figs. 1.9 and 1.10 show that the derivative along
y = −5 with respect to z are in better agreement with the analytical solution compared
to the derivative with respect to y. For ∂ f

∂y
along y = −5 (see Fig. 1.9), results of the
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Figure 1.9: Derivative of function f with respect to y along y =−5
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Figure 1.11: Derivative of function f with respect to y along z =−8

-5 0 5

y

-6

-4

-2

0

2

4

6

∂
f

∂
z

Analytic

LP

LPC

RPIM

Figure 1.12: Derivative of function f with respect to z along z =−8

RPIM and LPC are comparable and show oscillations. The LP method although delivers
a smooth curve, does deviate from the analytical solution considerably. For ∂ f

∂ z
along

y = −5 (see Fig. 1.10), the results of LPC method show oscillation and the other two
methods have an almost good agreement, however, near to boundary the deviation of re-
sults are not negligible.
For particles along z = −8, the spatial derivatives are plotted in Figs. 1.11 and 1.12.
Fig. 1.11 shows that smooth curves are obtained for ∂ f

∂y
along z = −8. LP and RPIM

methods show a better agreement with the analytical solution in comparison with the
LPC method, however, the results near to boundary deviate from the analytical solution.
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Figure 1.13: Derivative of function f with respect to y along y = 0
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Figure 1.14: Derivative of function f with respect to z along y = 0

Although Fig. 1.12 shows that smooth curves are obtained for ∂ f

∂ z
along z = −8, the nu-

merical solutions of all three methods deviate considerably from the analytical solution.
At the boundaries [−5,5], the smoothness of the solution gets also lost.
For the particles along y = 0, the spatial derivatives are plotted in Figs. 1.13 and 1.14.
Fig. 1.13 shows that all three methods deliver a smooth solution which also corresponds
well to the analytical solution, with the exception that the LPC method deviates from the
analytical solution at the boundaries.
In contrast to ∂ f

∂y
for the particles along y = 0, the solution for ∂ f

∂ z
of these particles

demonstrates oscillation for the LPC and RPIM method. The results of the LP method
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are more acceptable, except for the limits of the boundary [−8,8], where the LP method
also demonstrates oscillations.

1.9.3 Quantitative Comparison

In order to compare the results quantitatively, for each method, firstly the absolute error
at each particle i is calculated,

εyi =

∣

∣

∣

∣

(

∂ f

∂y

)

i

−
(

∂ f̂

∂y

)

i

∣

∣

∣

∣

, (1.21)

εzi =

∣

∣

∣

∣

(

∂ f

∂ z

)

i

−
(

∂ f̂

∂ z

)

i

∣

∣

∣

∣

. (1.22)

where f and f̂ represent the function 1.20 and its interpolation, respectively. Secondly,
the Euclidean or 2- Norm,

||εy||2 =
√

n

∑
i=1

ε2
yi, (1.23)

||εz||2 =
√

n

∑
i=1

ε2
zi, (1.24)

and the Chebyshev or ∞-Norm,

||εy||∞ = max
i=1,...,n

εyi, (1.25)

||εz||∞ = max
i=1,...,n

εzi, (1.26)

are calculated. The results are summarized in Figs. 1.22 and 1.21.
According to the results, the LPC method shows the largest error and the LP and the
RPIM methods expose comparable error. However, the LP method offers three advan-
tages in comparison to the RPIM method. Firstly, the results are smoother. Secondly, the
calculation time with LP is much shorter as opposed to RPIM and finally, for LP method
a less number of neighbors are required.

1.9.4 Irregular distribution of particles

The same problem is conducted for an irregular distribution of particles. The study do-
main and the reference function are the same as introduced in Sec. 1.9.1. The irregular
number of particles is created randomly and the number of particles is the same as for
the regular distribution of particles. The random distribution of particles is demonstrated
in Fig. 1.17.
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Figure 1.18: Derivative of function f with respect to y along y =−5

1.9.5 Results

For comparison, the results for ∂ f

∂y
along y = −5 and ∂ f

∂ z
along y = 0 are shown in

Figs. 1.18 and 1.19. Results show that all three methods deliver oscillations larger than
for the regular distribution of particles and the deviation from the analytic solution is not
satisfactory. In Fig. 1.20, the moving average smoothing method, introduced in Sec. B.9,
is applied to the results of the LP interpolation method. The comparison of the results
shows that the quality of interpolation after smoothing the results is improved. How-
ever, the deviation of the smoothed result from the analytic solution is still noticeable
and cannot be neglected.
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1.9.6 Effect of support size

In a further investigation of the interpolation methods, the norms of the error as explained
in Sec. 1.9.3 are compared for an increasing neighbor search radius (r). For this compar-
ison the regular distribution of particles as explained in Sec. 1.9.1 is used. The radius of
neighbor search is varied from r ≈ 0.3 to 1.1 (see Figs. 1.21 and 1.22), which is equal to
a grid space (average distance between two adjacent particles) of d ≈ 1 to 3.6.
Figs. 1.21 and 1.22 show that for LP and LPC the error grows with increasing search
radius (equal to more neighboring particles). On the other hand, RPIM shows a different
behavior and the errors decrease generally with increasing number of neighboring parti-
cles. Although the error decreases for RPIM with increasing number of neighbors, the
obtained error does not become smaller than that for LP with small number of neighbor-
ing particles. It must be also noted, that increasing number of neighboring particles is
associated with longer calculation time. Therefore, as discussed at the beginning of this
chapter, the LP interpolation method with the least number of neighboring particles has
proved so far to be the most accurate and the fastest interpolation method with smoother
results.
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2 Investigations with SPARC

The Soft PARticle Code (SPARC) was firstly applied by Chen [11] for simulation of
conventional laboratory tests (oedometer and triaxial tests). Chen has used for his sim-
ulations the linear polynomials with regularly distributed particles and a fixed-radius
research method. Chen has conducted the simulation of the oedometeric test for a cubic
sample of 7.5 cm × 7.5 cm × 7.5 cm with 64, 125 and 343 particles and a constant upper
plate velocity vp = 10−2 m/s.
For the simulation of the triaxial test, Chen has simulated a cylindrical sample with ra-
dius of 5 cm and height of 20 cm with a total number of 444 particles. The end plates
have been simulated frictionless (leading to homogeneous deformation) and with adher-
ent end plates (leading to inhomogeneous deformation). Chen has mentioned that for
the simulation with frictionless plates, the solver had difficulties finding the solution af-
ter an axial strain of about 5%. However, for the simulation with the fixed plate an axial
strain of 13% has been achieved and afterwards the simulation has not been possible even
for very small time increment ∆t = 10−7. Since Chen has applied the arc-length solver
method for his simulations, the velocity of the upper plate is not constant throughout the
simulation and vp is varied by the solver until a solution is found. The same as for the
oedometer test, he has conducted the simulation only for a dense sample with an initial
void ratio e0 = 0.62.
In this chapter a parameter study for triaxial and oedometer is conducted by the author
for SPARC. The oedometer test and triaxial tests are simulated with SPARC for dense
and loose samples. The number of particles and the upper plate velocity for both tests
are varied and the behavior of the solver is investigated for different number of particles
and different upper plate velocities. The contents of Secs. 2.1 to 2.6 are adapted from
I. Michel, I. Bathaeian et al. [38]1. In the aforementioned publication the results are also
compared with another meshfree method introduced in Ostermann et al. [41], and the
weaknesses and strengths of each method are discussed.

2.1 Laboratory tests

The oedometric and triaxial tests and their corresponding setups are described in this sec-
tion. These setups are the basis of the case studies. For SPARC the influence of the most
important parameters is analyzed with respect to quality and the ability to reproduce the
element test for loose and dense samples. The results of the respective element tests are
used as reference. The evaluation of stress and strain components (Tyy, Tzz, εzz and εv) for

1GEM - International Journal on Geomathematics by Springer Berlin Heidelberg. Reproduced with
permission of Springer Berlin Heidelberg in the format Thesis/Dissertation via Copyright Clearance Center.
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Figure 2.1: Schematic illustration of the oedometric test
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Figure 2.2: Schematic illustration of the triaxial test

plotting the results is presented in Sec. 2.3, including the specific simulation setups for
laboratory tests.
As described in Ostermann et al. [41], two popular benchmark problems in soil mechan-
ics are the oedometric and the triaxial test. The oedometric one a confined compression
test. The soil sample is loaded in axial direction and rigid side walls hinder any lateral
expansion (see Fig. 2.1). In contrast to this, in a conventional triaxial test the soil sample
is enclosed in a thin rubber membrane and placed between two plates inside a pressure
chamber. The sample is then loaded in axial direction by the stress component Tzz and
by constant lateral stresses Tyy = Txx, which is denoted as confining pressure σc, (see
Fig. 2.2) 2.
The measurements for the oedometric test refer to a sample of Hostun sand with height of
2.5 cm and diameter of 9.45 cm. Details can be found in [24]. In the oedometric tests the
height of the sample is kept small in order to reduce lateral friction effects. We consider
both a dense and a loose sample according to Tab. 2.1. Note that in reality oedometric
tests are often stress-controlled, i.e. a particular force is applied to the loading plate and
the deformations are measured over the course of time. Subsequently, the strains are

2Simulations of Secs. 2.1 to 2.6 are conducted in 3D, (x, y, z) space with Tyy = Txx.
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dense sample loose sample

initial void ratio e = 0.66 e = 0.87

initial density ρ = 1590 kg
m3 ρ = 1416 kg

m3

Table 2.1: Setup for oedometric tests

dense sample loose sample

initial void ratio e = 0.63 e = 0.84

initial density ρ = 1623 kg
m3 ρ = 1436 kg

m3

confining pressure σc = 100 kPa σc = 100 kPa

Table 2.2: Setup for triaxial tests

calculated from the recorded plate displacements. However, in our simulations the oedo-
metric test is simulated strain-controlled. For the triaxial test we consider a cylindrical
soil sample of Hostun sand with height and diameter of 10 cm, see [24]. The setup is
given in Tab. 2.2.

2.2 Material model

For the simulations of this study, the barodetic material model after Kolymbas (2011)
[29] is implemented in SPARC. The material model is explained in details in Sec. A.2.1.
The calibration of the constants for Hostun sand is offered in Tab. A.1.

2.3 Setup and evaluation

The case studies for SPARC in Secs. 2.4 and 2.5, respectively, are based on the following
simulation setups independent of the test type and the sample type:
simulation setup I – constant upper plate velocity and varying number of particles
simulation setup II – fixed number of particles and varying upper plate velocity
In order to compare the 3D simulations with the corresponding element test, the neces-
sary 1D stress-strain-curves and stress paths are generated by averaging the considered
quantity over all particles at the loading plate. The εv vs. εzz are generated by averaging
the volume change over each particle of the simulated soil sample to accommodate the
volumetric character. Note that a consistent comparison of the results is guaranteed by
considering the axial strain in logarithmic form, since for the calculation of εzz of the
element test, the Dzz component of stretching tensor is directly integrated. The relation
between logarithmic and engineering strain is,

ε log
zz = ln

(

1+ εeng
zz

)

, (2.1)
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dense sample

simulation setup np vp
(

m
s

)

∆t (s) ∆t · vp (m)

I

147 ∓0.001 0.0025 ∓2.5 ·10−6

1125 ∓0.001 0.0025 ∓2.5 ·10−6

3703 ∓0.001 0.0025 ∓2.5 ·10−6

II

1125 ∓0.01 0.0025 ∓2.5 ·10−5

1125 ∓0.001 0.0025 ∓2.5 ·10−6

1125 ∓0.0001 0.0025 ∓2.5 ·10−7

loose sample

I

147 ∓0.001 0.0025 ∓2.5 ·10−6

1125 ∓0.001 0.0025 ∓2.5 ·10−6

3703 ∓0.001 0.0025 ∓2.5 ·10−6

II

1125 ∓0.01 0.001 ∓1.0 ·10−5

1125 ∓0.001 0.001 ∓1.0 ·10−6

1125 ∓0.0001 0.001 ∓1.0 ·10−7

Table 2.3: Simulation parameters for the oedometric test

where,

εeng
zz =

∆h

h0
, (2.2)

where ∆h and h0 are the amount of deformation in the height and initial height of the
sample, respectively.

2.4 Oedometric test

In Tab. 2.3, the simulation parameters for the oedometric test are summarized. For both
the dense and the loose sample we consider a constant upper plate velocity vp =±0.001
m/s and three different numbers of particles (simulation setup I). Furthermore, simula-
tions for the medium number of particles np = 1125 and three upper plate velocities are
analyzed (simulation setup II). Due to the applied boundary conditions and the homoge-
neous deformation, convergence of Newton solver is achieved relatively easy.

2.4.1 Dense sand

The 3D simulations for simulation setup I show a very good agreement with the element
test (see Fig. 2.3). Since the deformation is homogeneous, the number of particles has
no influence on the accuracy. Therefore, the curves for the different resolutions almost
perfectly fit to the curve of the element test. The results for simulation setup II are
illustrated in Fig. 2.4. Only in case of upper plate velocity vp =∓0.01 m

s a slight deviation
from the element test can be observed. This is due to the fact that the time step size ∆t
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Figure 2.3: Dense oedometric test – Comparison of element test and 3D simulations for
simulation setup I: stress-strain-curve (a) and stress path (b), the curves are coincident
and the colors cannot be distinguished
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Figure 2.4: Dense oedometric test – Comparison of element test and 3D simulations for
simulation setup II: stress-strain-curve (a) and stress path (b) the curves are coincident
and the colors cannot be distinguished

is kept constant for all vp. Adapting the time step size such that the product ∆t · vp is
constant would lead to an even better agreement for vp =∓0.01 m

s .

2.4.2 Loose sand

As before, the 3D simulations are in very good agreement with the element test for loose
sand considering varying particle numbers (simulation setup I), cf. Fig. 2.5. However,
SPARC encounters convergence difficulties for loose sand in case of vp = ∓0.01 m

s and
∆t = 0.0025 s after the first unloading at axial strain −εzz = 0.01. Due to the change
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Figure 2.5: Loose oedometric test – Comparison of element test and 3D simulations for
simulation setup I: stress-strain-curve (a) and stress path (b), the curves are coincident
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Figure 2.6: Loose oedometric test – Comparison of element test and 3D simulations for
simulation setup II: stress-strain-curve (a) and stress path (b), the curves are coincident
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from loading to unloading, the initial guess of the solution, which is inherited from the
previous time step, becomes an inadequate choice. In order to guarantee convergence
of the Newton solver, ∆t is incrementally reduced until convergence is achieved with
∆t = 0.001 s. This value is used for all three simulations with varying vp, i.e. simulation
setup II (see Fig. 2.6).
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2.5 Triaxial test

The triaxial test is characterized by fixed vertical velocity at the upper plate and pre-
scribed confining pressure at the membrane. The boundary conditions make the con-
vergence of the Newton solver difficult or sometimes even impossible. Consequently,
SPARC is very sensitive to the number of particles np, the loading rate vp, and the time
step size ∆t.
Another important factor is the mode of constraint of particles in x- and y-directions. To
illustrate the influence of this factor, we consider a dense sample where the particles lo-
cated on the symmetry line are set free to move in x- and y-directions. The results of this
unconstrained simulation can be seen in Fig. 2.7. However, the assumption of friction-
less plates does not necessarily correspond to reality. Usually, filter stones with rough
surfaces are located at the center of the sample on both plates to prevent the sample from
sliding horizontally during the experiment (even if the plates are lubricated). The high
degree of freedom results in convergence problems in the Newton solver even before the
localization of deformation3. This ultimately leads to the abortion of the simulation at
maximum axial strain of −εzz = 0.18. Therefore, for the following SPARC simulations
the motion of particles located on the symmetry line is constrained in both horizontal (x
and y)-directions, while the other particles are set free to move in all directions.
The simulation parameters for the triaxial test are summarized in Tab. 2.4, where (−εzz)max

denotes the maximum axial strain reached during the respective simulation. Again,
for both the dense and the loose sample simulations with reference loading rate vp =
−0.001 m

s and three different numbers of particles are considered (simulation setup I).
Moreover, rate-independence is investigated (simulation setup II).

Dense sand

The illustration of the results for simulation setup I in Fig. 2.8 reveals that the larger the
number of particles is, the earlier SPARC encounters convergence problems. In general,
good agreement with the element test is achieved before the stress peak. Minor devia-
tions can be observed after the peak.
Convergence problems are already encountered in the first time step in case of vp =
−0.01 m

s and ∆t = 0.4 s. Therefore, ∆t was gradually reduced to ∆t = 0.06 s until con-
vergence is achieved. In Fig. 2.9, the results for simulation setup II are presented. It
is obvious that the smaller the loading rate is (in the sense of absolute value), the earlier
SPARC diverges: For vp =−0.001 m

s SPARC diverges right after the stress peak, whereas
for vp = −0.0001 m

s even the peak of the stress-strain-curve is not reached. In case of
small loading rates the numerical errors accumulate to such an extent that convergence
of the Newton solver is difficult or even impossible.

3Localization of deformation means that with increasing loading the deformation of a solid body local-
izes in narrow zones which gradually develop to shear bands. This occurs when the stiffness approaches
zero. Vanishing stiffness leads to an ill-posed initial boundary value problem inducing convergence prob-
lems in the Newton solver. For further details see [47].
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dense sample

simulation setup np vp
(

m
s

)

∆t (s) ∆t · vp (m) (−εzz)max

I

222 -0.001 0.4 −4.0 ·10−4 0.2

441 -0.001 0.4 −4.0 ·10−4 0.16

567 -0.001 0.4 −4.0 ·10−4 0.11

II

441 -0.01 0.06 −6.0 ·10−4 0.08

441 -0.001 0.06 −6.0 ·10−5 0.05

441 -0.0001 0.06 −6.0 ·10−6 0.02

loose sample

I

222 -0.001 0.4 −4.0 ·10−4 0.2

441 -0.001 0.4 −4.0 ·10−4 0.12

567 -0.001 0.4 −4.0 ·10−4 0.05

II

441 -0.01 0.05 −5.0 ·10−4 0.10

441 -0.001 0.05 −5.0 ·10−5 0.10

441 -0.0001 0.05 −5.0 ·10−6 0.01

Table 2.4: SPARC simulation parameters for the triaxial test
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and volumetric-axial-strain-curve (b)
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simulation setup I: stress-strain-curve (a) and volumetric-axial-strain-curve (b)

Loose sand

The results for loose sand with simulation setup I are illustrated in Fig. 2.10. As for the
dense sample, the larger the number of particles is, the earlier SPARC encounters conver-
gence problems (compare (−εzz)max in Tab. 2.4). Nevertheless, the 3D simulations agree
well with the element test before and slightly after the plateau of the stress-strain-curve.
As before, for the highest loading rate (in the sense of absolute value) vp = −0.01 m

s
convergence problems can be observed for large time step sizes. Therefore, ∆t is incre-
mentally reduced to ∆t = 0.05 s until convergence is achieved for simulation setup II.
In Fig. 2.11, it can be observed that the smaller the loading rate is, the earlier SPARC
diverges. For vp = −0.01 m

s and − 0.001 m
s SPARC diverges at almost −εzz = 0.1. For

vp =−0.0001 m
s even the plateau of the stress-strain-curve is not reached. This is again

due to the accumulation of numerical errors for small loading rates vp.

2.6 Discussion of results

As long as deformations are homogeneous, the 3D simulations are in agreement with the
element test. Although the Newton solver suffers from convergence problems for specific
number of particles or upper plate velocities, especially in the softening regime, SPARC
is capable of modeling triaxial tests beyond the stress peak if the appropriate parameters
are chosen. However, the parameter study shows that SPARC is very sensitive to the
number of particles and the velocity of the upper plate. In case of large number of
particles, the simulation breaks even before the peak of stress is achieved. Furthermore,
small upper plate velocities cause problems for the solver and the simulation breaks after
a small axial strain −εzz = 0.01 has been reached.
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Figure 2.11: Loose triaxial test – Comparison of element test and 3D simulations for
simulation setup II: stress-strain-curve (a) and volumetric-strain-curve (b)

2.7 Simulation of shear bands in clay

Simulation of shear bands with SPARC for sand was first conducted by Chen [11]. For
the simulations, Chen implements the barodetic material model after Kolymbas (2011)
[25] with the calibration for Hostun sand. The material model and the calibration of the
constants are explained in Sec. A.2.1 and Tab. A.1, respectively. For the simulations,
Chen discretizes the continuum with 231 regular particles and conducts the simulation
for a dense sample with initial void ratio e0 = 0.63. Chen also conducts a parameter
study, regarding the initially irregular distribution of particles and discusses that in case
of irregular particles, strain localization can be simulated but no shear bands can be de-
tected. Furthermore, Chen adds that although using irregular allocated particles is one
of the main goals of meshfree methods, the performance of SPARC with irregularly dis-
tributed particles is much worse than with regularly distributed ones.
In the following we present the development, thickness and orientation of shear bands in
clay in biaxial tests with the boundary conditions introduced in Sec. 1.3. As for the mate-
rial model, the barodectic material model for clay after Medicus and Fellin (2017), [37]
with the calibration for Dresden clay is implemented in SPARC. A detailed description
of the material model with its calibration procedure is offered in Sec. A.2.4 and Tab. A.4,
respectively. The contents of Secs. 2.7 to 2.11 are adapted from the publication, Simula-
tion of Shear Bands with Soft PARticle Code (SPARC) and FE, in GEM - International
Journal on Geomathematics [47]4.
In the publication [47], the results of the simulation with SPARC are also compared for
the same initial conditions with the results of Finite Element method (FE), however, in
the following only the results of SPARC are presented. Furthermore, the parameters of
Mohr-Coulomb failure criterion are determined, so as to compare the orientation of shear
bands with the analytical solution.

4GEM - International Journal on Geomathematics by Springer Berlin Heidelberg. Reproduced with
permission of Springer Berlin Heidelberg in the format Thesis/Dissertation via Copyright Clearance Center.
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Figure 2.12: Illustration of (a) boundary conditions and (b) particles representing the
study domain

2.8 Simulation setup

A biaxial test can be regarded as a plane strain adaption of a triaxial test, to show shear
localization in a 2D numerical setup. The deformation is driven by two lubricated loading
caps on the top and the bottom of the specimen. The upper cap moves downward com-
pressing the specimen. On the lateral boundaries, the constant traction of p is applied
(see Eq. 1.2). The resulting boundary conditions are illustrated in Fig. 2.12 a. In our sim-
ulations, the initial void ratio e0 = 0.45 under a cell pressure p = 100 kPa, corresponding
to a dense sample, is adopted. Therefore, a peak in the stress-strain relationship with
post-peak strain-softening, strain localization or formation of shear band(s) in the biaxial
test simulation are to be expected. The particle configuration is shown in Fig. 2.12 b. The
surface particles are subjected to cell pressure p. Velocity components vz of particles on
loading caps are prescribed, whereas vy is unknown. Note that in order to prevent the
specimen from horizontal translation, the velocity component vy = 0 for the particle in
the middle-top of the sample is prescribed.
Two simulation examples, with and without imperfection in the specimen, are presented
in the following. The imperfection is implemented by increasing the void ratio of the
particles representing a weak zone (Fig. 2.12 b) by 0.02, resulting in relatively looser
state and thus lower stiffness. Given a weak zone, the formation of shear bands is ex-
pected to initiate from the weak zone. In order to investigate the dependency of the
shear bands, simulated by SPARC, on the number of particles, three sets of simulations
with initially homogeneous setup for three number of particles, np = 180, 231 and 299
were conducted. Simulation with an implemented imperfection were done only for 231
particles. All simulations are summarized in Tab. 2.5.
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Method Setup np

SPARC
homogeneous 180 231 299

imperfection - 231 -

Table 2.5: Summary of simulations
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2.9 Mohr-Coulomb vs. barodesy

The analytical solutions addressing the orientation of shear bands for granular materials,
are based on two conventional soil parameters, friction angle ϕ and dilatancy angle ψ

(see Sec. 2.10.3 for detailed discussion). Element simulation of triaxial test with barodesy
for clay for three consolidation pressures (σc = 100 kPa, 200 kPa and 300 kPa) were con-
ducted and the results are presented in Fig. 2.13. Where T1 and T2 are the principal stress
components5. The acquired values achieved from the element tests were applied for de-
termination of friction angle ϕ and cohesion c according to Mohr-Coulomb criterion (see
Fig. 2.14), which yields a friction angle of ϕ = 32.9◦ and cohesion of c = 24.7 kPa. In
order to reproduce almost the same volumetric plastic strains with Mohr-Coulomb, a di-
latancy angle of ψ = 7.3◦ was assumed. Stress-strain curves and volumetric behavior
with linear-elastic, perfect-plastic Mohr-Coulomb are plotted Fig. 2.15.

2.10 Results

2.10.1 Simulations with initially homogeneous fields

Since the initial stress field and void ratio field are homogeneous, the deformation in
the sample shall be homogeneous, meaning that the stress strain curve of all particles
must be identical and must overlap with the curve obtained from element test result.
The constitutive model barodesy for clay is used to obtain the stress strain curve by

5Since the calibration of Mohr-Coulomb parameters, is conducted in axisymmetric conditions, there-
fore, T2 = T3. However, the biaxial test has plane strain conditions, by which T2 = T3 does not hold.
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prescribing the deformation matrix,

D =











0 0 0

0 Dyy 0

0 0 −1











, (2.3)

and using an initial void ratio e = 0.45 and stress state T = 1 · (−100 kPa). Dyy is deter-
mined in each time step by satisfying the condition Tyy = 0 with Ṫyy obtained from the
constitutive model.
The stress-strain curves of all particles obtained from SPARC simulation are shown in
Fig.2.16. The SPARC simulation results show that all curves overlap with one another
and with the element test curve until −εzz ≈ 4.6% is reached. This implies that the de-
formation of the sample for −εzz < 4.6% is homogeneous. Thereafter, the deformation
starts to localize at particles, the localization causes numerical error and the continua-
tion of simulation leads to the accumulation of the error. When the axial strain (−εzz)
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Figure 2.16: Stress-strain curves (Tzz − εzz) of all particles in SPARC, the blue dashed
line is the result of an element test

approaches 4.6% deformations start to localize and as it can be seen in (Figs.2.18 a and
2.19 a) at −εzz = 6.2, shear bands in ”V” form are formed in the middle bottom of the
model. The void ratio field after localization in Fig. 2.18 a, shows that contraction occurs
in the whole sample. However, when deformations start to localize, the void ratio in the
shear bands exhibit volumetric increases (see Fig.2.18 a). This trend is expected to occur
in a dense granular sample with strain softening behavior.

2.10.2 Simulations with imperfection implemented

The stress strain curves in terms of σzz and εzz obtained by SPARC are plotted in Fig. 2.17.
For −εzz < 2.0% all curves except for those of particles in the weak zone are in good
agreement with those of the element test curve. At −εzz ≈ 2.3%, strains start to localize
significantly in a shear band initialized by the weak zone. Thereafter, strains occur mainly
in the shear band. The initial shear band is followed by some other shear bands (see
Figs. 2.18 b and 2.19 b) before the program aborts. At this point the solver cannot find
any solution even with an extremely small time-steps ∆t < 10−10. The void ratio field
in Fig. 2.18 b, shows that contraction occurs in the whole sample, however, once the
deformations start to localize, the changes in the void ratio of the shear band show a
dilatant behavior.

2.10.3 Orientation and thickness of the shear bands

Vermeer [57] conducted theoretical and experimental investigations on the orientation θ

and thickness of shear bands in biaxial tests, his investigations show that for fine sand, the
orientation of shear bands coincides almost the Mohr-Coulomb solution θ = 45◦+ϕ/2
is observed. Where ϕ is the friction angle. Investigations of Hand and Drescher [20]
explain the dependency of the shear bands on the magnitude of the confining pressure.
As mentioned in Han and Drescher [20], the shear band inclination angle with respect to
the minor principal stress decreases when the confining pressure increases, however, the
shear strains increase. Experimental results of Hand and Drecher [20], have shown that
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Figure 2.17: Stress-strain curves (Tzz − εzz) of all particles in simulations with imperfec-
tion implemented in SPARC, the blue dashed line is the result of an element test

at higher confining pressures (almost 400 kPa), the shear band inclination is in general
much lower than the one predicted by Mohr-Coulomb. The acquired inclination angle
with SPARC is about 39.8◦ for the test with initially homogeneous sample and about
45.8◦ for the test with implemented imperfection.
As discussed in Sec. 2.9, a friction angle of ϕ = 32.9◦ can be attributed to Dresden clay.
Considering the solution of Mohr-Coulomb with θ = 45◦+ϕ/2, we should be expecting
an inclination of θ = 61.4◦ which is larger than the the results of SPARC.
As for the thickness and inclination of the shear bands acquired by FE methods using a
hypoplastic constitutive model, Tejchman and Wu have shown in [51] that the inclina-
tion and and thickness of the shear band are dependent on the spatial discretization. In
a further investigation, Tejchman and Bauer [50] benefit from the results of an extension
of the hypoplastic model for polar continuum with a characteristic length, the so-called
mean grain diameter d50. Their results show, the thickness of the shear band is the same
for a fine and coarse mesh. Tejchman and Bauer also mention in order to realistically
simulate the thickness of the shear zone within a polar continuum, the size of the finite
element should be smaller than 5 ·d50.
In Figs. 2.19 a, c and d and Figs. 2.18a, c and d, results of SPARC for a homogeneous
setup and for different number of particles are presented. As can bee seen, for the lower
number of 180 particles, shear bands are not clearly formed and deformation seems to
localize on the two corners of up-left and down-right. This phenomenon can be so ex-
plained, that in case of homogeneous setup, the shear bands appear as a result of the
accumulated error in each time-step, and with less number of particles, the accumulation
stays smaller which can lead to later appearance of shear bands or no meaningful appear-
ance of shear bands. For more than 231 particles, the shear band has a ”V” shape in the
middle bottom of the specimen and has a thickness of 5 · d, where d is the average dis-
tance between two particles, while for more than 299 particles (see Figs. 2.18 c and 2.19
c), the shear band is not as thick as by 231 particles and has a thickness of 3 · d. Fur-
thermore, for 299 particles, shear bands have a symmetric shape not only along y axis,
but also along z axis. As for the inclination, the acquired shear bands for more particles
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Figure 2.18: Demonstration of shear band in form of void ratio for
a) homogeneous, np = 231 b) with weak zone, np = 231 c) homogeneous, np = 299
d) homogeneous, np = 188
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Figure 2.19: Demonstration of shear band in form of |D| for a) homogeneous, np = 231
b) with weak zone, np = 231 c) homogeneous, np = 299 d) homogeneous, np = 188

(299) have a slightly larger angle as those acquired for 231 particles. From the acquired
symmetric shape, and the larger inclination angle, it can be deduced that for SPARC, the
denser the particles, the better the shear bands can be simulated.

2.11 Discussion of results

SPARC uses the strong formulation to solve the differential equations. Therefore, the
equilibrium is fulfilled at every single particle with a prescribed tolerance. SPARC is
capable of simulating shear bands even when the specimen has an initially homogeneous
setup, this can be attributed to the numerical inaccuracy and error accumulation in the
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domain. Simulations with different number of particles with SPARC have demonstrated
that the density of particles also plays a role in the shape, thickness and orientation of
shear bands and the denser the particles, the better the shear bands can be reproduced in
the framework of SPARC.



3 Simulation of punching

The simulation of punching into sand was a challenging task for SPARC and could not
be easily achieved. The first attempt at simulating punching by solving the Cauchy equa-
tion of motion (Eq. 1.1) on the boundaries of the model (walls and bottom) failed and
the simulation broke after some time steps. In the second attempt, the idea of exclusion
of boundary particles as introduced in Sec. B.6, was implemented. Also this idea did not
prove to be effective and the simulation could not continue. Afterwards, the definition
of slip boundary condition (Eq. 1.2) on the side walls and the bottom of the model and
the tension control as explained in Sec. 1.7 were implemented, which proved to be effi-
cient and the simulation could be continued until the peak of the load-settlement curve
(see Fig. 3.12) was reached and afterwards, the convergence of the solver was no more
possible. The problem of finding no solution at the peak was finally solved by imple-
menting the idea of reconditioning the solution procedure, explained in Sec. 1.8. The
reconditioning procedure needed to be applied over a number of time steps at the peak of
the load-settlement curve and afterwards, the solver could continue without recondition-
ing. Anyway, the simulation could not continue after reaching a relative depth of about
dp/B ≈ 0.2, where dp is the penetration depth and B is the width of the foundation, even
for very small time steps and the reconditioning of the solution could not help.

3.1 General remarks

In this section, the slide planes (shear bands) and the load-displacement behavior associ-
ated with the problem of punching are introduced and the analytically predicted geometry
of the slide planes is used for comparison of the numerical results delivered by SPARC
(see Sec. 3.3.4).
Kolymbas considers in [29] a circular slide plane as the simplest failure mechanism for
the ideal case of friction free soil (ϕ = 0). There are more complicated failure mecha-
nisms introduced, however, all methods make simplifying assumptions regarding the soil
properties, ideal rigid plastic material, and the development of deformations, formation
of a wedge of soil under the foundation. Despite such simplifications, comparisons be-
tween model tests and full-size foundations by Heinz [21] demonstrate that the acquired
failure mechanism for sand is comparable with real failure mechanism (see Fig. 3.1).
Slip planes develop when soil is sheared to failure. However, the rigid foundation hin-
ders formation of any slip plane through the foundation and as a result, no slip plane is
formed just below the foundation but only a rigid wedge. The wedge just below the foun-
dation in Fig. 3.2 penetrates into the soil and causes twin zones of shear. In the zones,
adjacent to the wedge, shear planes are formed. In the neighboring triangular zone, the

37
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Figure 3.1: X-ray photograph of failure mechanism of dense sand, adapted from
Aubram [2], first published in Heinz [21]
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Figure 3.2: Assumed shape of failure of dense sand according to Leonards [33], Budhu
[9] and Terzaghi and Peck [52]

so-called Rankine passive zone, shear planes are formed oriented at angles of 45◦+ ϕ
2 to

the horizontal, Budhu [9], Leonards [33]. The triangular shear zone is connected to the
wedge with the logarithmic spiral function suggested by Terzaghi and Peck [52],

a = a0 · eω·tanϕ , (3.1)

with a, a0 and ω demonstrated in Fig. 3.2. By setting ω = π
2 in Eq. 3.1, the length of a1

can be obtained. The slide planes reach the ground surface in the distance of l from the
corner of the foundation which is equal to,

l = 2 ·a1 · cos
(

45− ϕ

2

)

. (3.2)

We need to distinguish here between dense soil and loose soil, as for the dense dilat-
ing soil, the collapse corresponds to the peak friction angle ϕp, see the left diagram in
Fig. 3.3. On the other hand, for loose non-dilating soil, the failure is associated with the
critical friction angle ϕc and no peak in the load-settlement curve is expected, see the
right diagram in Fig. 3.3. In this study, the term ”peak failure” is attributed to the peak of
the load-settlement curve for dense soils. There is a plethora of equations available for
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Figure 3.3: Assumed load-settlement behavior - left: dense soil, right: loose soil, by
Budhu [9]

calculation of the bearing capacity of shallow foundations, regarding the friction angle ϕ ,
cohesion c and surcharge q, the expression for bearing capacity qult can be summarized
as follows [29],

qult = γ ·B ·Nb + c ·Nc +q ·Nd , (3.3)

where γ is the density of the soil and Nγ , Nc and Nq are dimensionless factors. Nγ is the
factor due to the soil weight and is only a function of the friction angle. Nc and Nq take
into account, respectively, the effects of cohesion and surcharge. The ultimate bearing
force Qult is calculated,

Qult = qult ·B. (3.4)

For a more detailed insight into the equations of bearing capacity, the reader can refer to
[31, 9, 33].

3.2 Experimental model test

In this chapter we refer to the experimental results conducted by Aubram [2] for com-
parison and validation of our numerical results. These experiments were designed and
conducted for the validation of the Arbitrary Lagrangian-Eulerian (ALE) method de-
veloped by Aubram, and are therefore also appropriate for our purpose. Moreover, the
experiments give an insight into the phenomenology of penetration.

3.2.1 Test setup

Aubram [2] has conducted experimental tests on sand to investigate the displacement
field, formation of slide planes and load-settlement behavior during punching. The ex-
periments are carried out under quasi-static and plane strain conditions.
The model provides a chamber with internal dimensions of 1003 mm × 502 mm × 152
mm filled with dry sand and the model foundation has dimensions of 150 mm × 100
mm × 150 mm, (breadth B = 150 mm). The tests have been carried out at 1g and no
surcharge has been applied to the ground surface.
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Property Unit Value

angularity - rounded to subangular

form - cubic to elognate

grain mass density ρs g/cm3 2.65

emin - 0.482

emax - 0.779

d10 mm 0.61

d30 mm 1.07

d50 mm 1.37

d60 mm 1.58

Cu - 2.59

Cc - 1.19

ϕc ◦ 31.5

Table 3.1: Granulometric and mechanical properties of the model sand, Aubram [2]

3.2.2 Model test sand and details of penetration

The sand used for the experiments has diameter of 1 to 3 mm. The minimum and max-
imum void ratio of the sand lie between emin = 0.482 and emax = 0.779, respectively.
In Tab. 3.1, a summary of main properties of the model sand is provided. The material
model applied for our simulation is the hypoplastic model after von Wolffersdorff intro-
duced in Sec. A.2.3 with the calibration for the model test sand summarized in Tab. A.3.
The dense setup of the experiments with e0 = 0.545 is chosen for back-calculation in this
study. For the dense sample a maximum relative penetration depth of (dp/B)max equal to
0.55 has been achieved. The penetration increment for this experiment is ∆z = 2 mm.

3.3 Numerical simulation and validation

3.3.1 Dimension of the model

The dimensions of the numerical model are chosen in correspondence to the experiment
with slight modifications as demonstrated in Fig. 4.9. The simulation is conducted in
plane strain condition and although it is possible to take advantage of the symmetry, the
complete model is simulated. In this way, the particles lying on the symmetry line under
the foundation, have more neighboring particles. This leads to better approximation of
spatial variables and a more stable calculation procedure. However, for the demonstration
of the results, the half symmetric parts of the simulations are plotted. For the simulation
np = 861 number of particles with an average grid size of d = 2.5 cm were created. The
fixed search radius was chosen equal to r ≈ 1 ·d so as to have the least number of required
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Figure 3.5: Demonstration of particle distribution and neighbors for determination of
spatial derivatives and normal vector of the surface

neighbors (see Fig. 3.5). As discussed earlier in Sec. 1.9, simulations with less number
of neighbors deliver the smoothest results and consequently deeper penetration depths
can be achieved .

3.3.2 Foundation and boundaries

The foundation which represents a strip foundation, is rigid and perfectly rough. The
particles lying on the vertical walls have freedom of movement in vertical direction and
the slip boundary condition as explained in Eq. 1.3 is applied on the walls. The particles
on the bottom are free to move in horizontal direction and the same boundary condition
(Eq. 1.3) is applied on the bottom of the model. On the ground surface, the boundary
condition with prescribed traction as explained in Eq. 1.2 is applied. For the pressure p

in Eq. 1.2 a value of 1 kPa is chosen so as to avoid the occurrence of tensile stresses.
Furthermore, tension control as explained in Sec. 1.7 is applied to the stress tensor of
all particles after each time step. Simulations without the tension control and the slip
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Figure 3.6: Left: SPARC simulation of shallow penetration into sand at dp/B = 0.01 -
smoothed incremental displacement field. Right: PIV result of shallow penetration into
sand for the corresponding dp/B - incremental displacement (adapted from Aubram [2],
Fig. D.3)2

boundary condition broke before reaching the peak of the load-settlement curve.

3.3.3 Initial stress

The initial stress is assumed to be a K0-state, with K0 = 1− sinϕc = 0.47, according to
Tab. 3.1. The stress state grows linearly with the depth,

Tzz = γ · z, (3.5)

and,
Tyy = Txx = K0 ·Tzz, (3.6)

with γ = 16.81 kN/m3 for e0 = 0.545.

3.3.4 Results and discussion

The incremental displacements after a slight penetration depth of dp/B = 0.01 are com-
pared with the experimental results in Fig. 3.61. SPARC is capable of simulating the
outward movement of particles to the surface and boundary of the model due to the pen-
etrating foundation. However, the incremental displacements far away from the founda-
tion and near to the surface of the ground are underestimated in comparison to those from
the experiment. As mentioned by Aubram [2], by varying the values of the granular hard-
ness hs (parameter of the hypoplastic model von Wolffersdorff [58]) a better prediction
of the ground heaving is possible, however, this also influences the load-displacement
behavior of the simulation, since the parameter hs determines the stiffness of the material
model, and has therefore been avoided in this study.

1Differences in the size of the foundations in Figs. 3.6 to 3.11 are due to the scaling factors applied to
the figures in the experimental results in Aubram [2].

2Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin. Reproduced with per-
mission of Shaker Verlag GmbH.
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Figure 3.7: Left: SPARC simulation of shallow penetration into sand at dp/B = 0.01 -
smoothed maximum shear rate of deformation. Right: PIV result of shallow penetration
into sand for the corresponding dp/B - incremental maximum shear strain (adapted from
Aubram [2], Fig. D.3)1

Maximum incremental shear strains,

∆γs =
1
2
|∆ε1 −∆ε2| , (3.7)

where ∆ε1 and ∆ε2 are the maximum and minimum eigenvalues of the increment in the
strain tensor, respectively, are used for demonstration of shear bands in the experiments
of Aubram. For demonstration of shear bands in SPARC, the maximum shear rate γ̇s of
deformation is plotted,

γ̇s =
1
2
|D1 −D2|, (3.8)

where D1 and D2 are the maximum and minimum eigenvalues of the rate of the deforma-
tion tensor D. At dp/B = 0.01, the maximum incremental shear strains are compared in
Fig. 3.7. PIV results show that initially, the shear strains are localized beneath the outer
edge of the foundation forming a wedge under the foundation as discussed in Sec. 3.1.
Results of SPARC also show the formation of the wedge beneath the foundation initiated
from the outer edge of the foundation. The experimental results, also show that radial
shear bands start to develop from the very beginning of the penetration (see Fig. 3.7,
right). However, these initial radial shear bands are not reproduced by SPARC in this
stage of penetration. In Fig. 3.8, the incremental displacements after reaching the peak
of the load-displacement curve and complete formation of shear zones are plotted. Par-
ticles beneath the foundation are pushed away due to the penetrating foundation, which
is very well simulated by SPARC and can be considered as an advantage of meshfree
nature of SPARC, since most mesh based numerical methods are not capable of repro-
ducing this behavior and the material points beneath the foundation follow an almost
vertical trajectory, see e.g. in Fig. 3.9 the incremental displacement field predicted by
ALE method compared with the experimental results. ALE results seem to be in contrast
with the results obtained from the experiment(see Fig. 3.9, left), where no clear wedge
formation can be observed and the incremental displacements direct under the founda-
tion have an outward component. The incremental displacements of SPARC near to the
wall boundary show that the particles move almost vertically upwards and the horizon-
tal components of the displacement disappear, which does not correspond to the results
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Figure 3.8: Left: SPARC simulation of shallow penetration into sand at dp/B ≈ 0.18 -
smoothed incremental displacement field. Right: PIV result of shallow penetration into
sand for dp/B = 0.33 - incremental displacement (adapted from Aubram [2], Fig. D.4)1

Figure 3.9: Left: PIV results of shallow penetration into sand - incremental displace-
ments. Right: ALE simulation of of shallow penetration into sand - incremental dis-
placements (adapted from Aubram [2], Fig. 8.14)1

from the experiment. Results from Fig. 3.11 show how well SPARC is capable of repro-
ducing failure mechanism and the development of the slide planes. The dense sand with
e0 = 0.545, loosens in the shear bands and reaches a maximum value of e ≈ 0.59. In the
wedge beneath the foundation, the material is on the other hand densified and reaches
e ≈ 0.53 (see Fig. 3.10). Evaluation of incremental volumetric strain of the experiments
in Aubram [2], p. 291, show that no extreme densification occurs in the wedge below
the foundation, which also corresponds to the prediction of SPARC in comparison to the
predictions made by the ALE method in Aubram [3] where e = 0.482 in the wedge has
been predicted. This is due to the fact that SPARC can more realistically simulate the
outward escape of the particles due to penetration under the foundation and therefore no
excessive densification is predicted.
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Figure 3.10: Demonstration of void ratio field for dp/B = 0.18, e0 = 0.545

Figure 3.11: Left: SPARC simulation of shallow penetration into sand at dp/B ≈ 0.18
- smoothed maximum shear rate of deformation. Right: PIV result of shallow penetra-
tion into sand for the dp/B = 0.33 - incremental maximum shear strain, (adapted from
Aubram [2], Fig. D.4)1

The normalized load-displacement curve obtained by SPARC is compared with the ex-
periment in Fig. 3.12. The results show that SPARC has been able to predict the load-
displacement behavior well and the peak of the curve is predicted at the same relative
penetration dp/B of the experiments. This can also be attributed to the more realistic
simulation of particle trajectories in the wedge area and their outward movement which
result in an earlier prediction of the full mobilization of the shear strength in comparison
to other mesh based numerical methods (e.g. see Aubram [3]). Secondly, no exces-
sive densification is predicted by SPARC in the wedge which also contributes to a better
prediction of the load-displacement behavior. In Fig. 3.13, the shear bands obtained by
the analytical solution as shown in Fig. 3.2 are plotted over the shear bands obtained by
SPARC for comparison. It can be seen that the depth of the wedge obtained from the
analytical solution is in good agreement with the one obtained from SPARC, however,
the shear bands predicted by SPARC lie deeper in comparison.
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Figure 3.12: Comparison of load-displacement behavior for SPARC and the experiment,
data of the experiment extracted from Aubram [2]1

Figure 3.13: Comparison of the shape of the shear band obtained for the analytical solu-
tion (see Fig. 3.2) with the results of SPARC



4 Cone and pile penetration

4.1 General remarks

Investigation into cone/pile penetration tests can be categorized in three main fields, ex-
perimental, analytical and numerical. The analytical methods include: bearing capacity
theories by limit plasticity, cavity expansion and strain path method. The numerical
methods can be categorized as, conventional FEM, large-displacement FEM (ALE and
adaptive remeshing), discrete element methods (DEM), and meshless methods.

4.2 Experimental analysis

4.2.1 Aubram, 2013

Aubram [2] conducted different cone penetration tests on gravelly sand 1 to 3 mm, a
quartz sand with well-rounded to angular grains. The detailed granulometric and me-
chanical properties of the model sand are given in Tab. 3.1. The results have been evalu-
ated by means of Particle Image Velocimetry (PIV). The pile penetration tests have been
conducted in both dense and loose sand and with three different pile tips (flat, conical
and hemispherical). Here, the results of his experiments for pile penetration with conical
pile tip (cone) are presented. The incremental displacement and formation of shear zones
for dp/D = 1.5, where dp is the penetration depth and D the maximum diameter of the
cone, are plotted in Fig. 4.1.

4.2.2 Zöhrer, 2006

Zöhrer [63] carried out several CPT model tests on four Martian analogue materials 2,
all four materials have a grain distribution of medium silt to coarse sand. Tests are con-
ducted in a cylindrical container with a diameter of 26.2 cm and height of 33.3 cm, the
cone has a diameter of 1.8 cm, which means that the ratio of the sample diameter to cone
diameter is approximately 15. Five different shapes of tips have been used for the exper-
iments, three with conical shapes with opening angles of 30◦, 45◦ and 60◦, a spherical
and a flat tip.
Zöhrer has investigated the influence of several parameters, from which, the influence of

1Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin. Reproduced with per-
mission of Shaker Verlag GmbH.

2The term "Martian analogue material" is used by Zöhrer to denote a sand similar to the one expected
on the surface of Mars.

47



48 CHAPTER 4. CONE AND PILE PENETRATION

Figure 4.1: PIV results for pile penetration in dense sand (Dr = 95%), Left: incremental
displacements at dp/D = 1.5, Right: incremental maximum shear strain at dp/D = 1.5,
(adapted from Aubram [2], Figs. D.10 and D.11)1

dry density and tip shape are of interest. As expected, density has proved to have a funda-
mental influence on the penetration force, e.g. an almost 15% increase in density results
in almost 30 times higher penetration force at a penetration depth of 20 cm. Investiga-
tions into the influence of tip shape have revealed that tip variation does not significantly
affect the penetration force as the dry density does. However, it can be seen that for lower
values of opening angles the penetration force is smaller and the maximum penetration
force is achieved for a flat tip.

4.2.3 White, 2002

White [61] has conducted detailed experimental tests on pile penetration, a summary of
his experimental results is provided here. His experiments show a cone of soil below the
pile tip which moves with the pile (see Fig. 4.2). White divides the velocity field into
three zones, I: directly below the pile is a zone of rigid body which is translating with
the pile, II: below this zone, and extending upwards under a line at approximately 45◦

from the vertical is a zone of soil which is translating radially away from the pile, III:
above this zone is a region of soil in which the velocity is relatively low. White finds this
sharp variation in velocity in direct contrast to a cavity expansion model for penetration,
in which all components are assumed to vary only in radial direction. In contrast to
velocity, the trajectories illustrate the curvature of the paths during the installation (see
Fig. 4.3). As the pile penetrates, the movement is generally downwards, with the soil
trajectories curving toward horizontal as the pile passes. After the pile tip has passed
the soil, the direction of movement reverses and the soil relaxes back towards the pile
shaft. For soil elements located between 0.5D and 1D from the pile, strains reach values
greater than 50% in compression and 200% in extension. These strain ranges are beyond
the range of conventional laboratory tests and constitutive models are rarely applied to
such large deformations. Key characteristics are sharp increase in horizontal extension
close to the pile tip and the more gradual increase in vertical compression (see Fig. 4.4).
On passing pile tip, soil elements remain in horizontal extension relative to their initial

3Reproduced with permission of the author: David White, University of Southampton.
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Figure 4.2: Velocity field close to advancing pile and the demonstration of cone of soil
below the pile tip, the area in which the velocities have no radial component according
to White (figure adapted from White [61])3
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displacement relaxation (figure reprinted by data from White [61] p. 5-47)3
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Figure 4.4: Demonstraion of strains surrounding a pile during an increment of penetra-
tion (adapted from White [61])3

state, albeit having rotated by as much as 45◦. White summarizes the distribution of strain
surrounding a pile during an increment of penetration in Fig. 4.4. Results of experiments
conducted by White and Bolton [60] demonstrate that the effect of end wall boundary on
the kinematic behavior close to the pile can be neglected.

4.2.4 Bolton et al. 1999

Bolton et al. [8] conducted a number of centrifuge cone penetration tests and investigated
the effects of container size, particle size and stress level as follows,

Effect of container size

Results for B/D ratios of 85 to 8.5, where B is the distance from the periphery of the cone
to the end boundary and D is the maximum diameter of the cone, for dense sand show that
the difference in cone penetration resistance for B/D larger than almost 30 is negligible.
However, for B/D < 8.85, the cone penetration resistance increases significantly (see
Fig. 4.5). The suggestion by Bolton et al. [8] is to conduct cone penetration tests at least
10 ·D away from rigid boundaries.

4Geotechnique Letters by Institution of Civil Engineers (Great Britain). Reproduced with permission
of Thomas Telford, Ltd. in the format Republish in a thesis/dissertation via Copyright Clearance Center.
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Figure 4.5: Effect of container size on cone penetration resistance, (adapted from Bolton
et al. [8], p.547)4

Particle size effect (D/d50)

The effect of the ratio of cone diameter (D) to particle mean size (d50) has also been
studied. Results have shown that for values of D/d50 between 28 to 85, cone penetration
resistance is not affected significantly by particle size. However, it has been reported that
some increase in cone penetration resistance is to be expected if the value of D/d50 falls
below 20.

Stress level effect

Three different tests for elevated gravity levels of 40g, 70g and 125g have been con-
ducted, while other parameters have been kept constant. The results demonstrate that
the penetration resistance decreases with increase of stress. Bolton et al. argue that this
decrease could be due to grain crushing.

4.3 Analytical methods

The analytical methods suffer from shortcomings due to the assumptions made. The
bearing capacity methods, define the soil behavior as rigid-plastic and the failure mech-
anisms do not comply with the boundary conditions. The cavity expansion method is
not capable of modeling the real shape of the cone (Teh [49], Baligh [5]). The experi-
mental results conducted by White [60] are in direct contrast with strains calculated by
cavity expansion theory, in which the they increase as the pile approaches. Finally for the
strain path method, although the obtained strain paths match well with the experimental
results, the volumetric behavior of the sand is not captured since the method is developed
for undrained penetration. Furthermore, the stress field determined by the strain path
method does not satisfy the equilibrium conditions, Teh [49].
Due to the shortcomings of the above mentioned methods and the uncertainties included
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rough smooth

uz ur uz ur

shaft prescribed 0 free 0

cone prescribed 0 prescribed 0

Table 4.1: Description of kinematic boundary conditions for rough and smooth cone, uz

and ur are the vertical and radial displacements, respectively

Figure 4.6: Comparison of displacement field for smooth cone, (left) and rough cone,
(right) (adapted from Teh [49] p. 8.12)5

in the derivation of the theories, we avoid to further explain these methods. Interested
readers are referred to Durgunoglu and Mitchell [13] for bearing capacity theory, Yu and
Houlsby [62] for cavity expansion theory and Baligh [6] for strain path method.

4.4 Numerical models

4.4.1 Conventional finite element method

Teh [49] carried out analytical and numerical investigation of the cone penetration test
into clay, for the analytical investigation he applied the strain path method, in which
the soil is assumed to flow like a viscous fluid. In the numerical FEM model, the cone
has been simulated wished in place. Teh investigates rough and smooth boundaries.
He defines the boundary conditions on the shaft of the cone different from the cone for
rough and smooth conditions, see Tab. 4.1 for boundary conditions applied by Teh. Teh
mentions that the displacement fields below the tip in both cases are found to be similar
and the rough shaft affects only soil displacements adjacent to it, in contrast to the smooth
shaft, where the displacements around the shaft are very small (see Fig. 4.6).
Cudmani [12] conducted simulations for cone penetration test (CPT) in axisymmetric
conditions. Cudmani has used the hypoplastic model after von Wolffersdorff [58] with

5Reproduced with permission of the author: Teh Cee, Nanyang Technological University, Singapore
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the calibration from Herle and Gudehus [22] for his simulations. The simulations have
been carried out with and without intergranular strain concept (Niemunis and Herle [39]).
The cone has been modeled as a rigid body and friction-free contact between the soil and
the shaft has been assumed. The following boundary conditions have been assumed:

• on the wall: Trr = const. and Trϑ = 0
• on the ground surface: Tzz = const.
• on the bottom: ur = uz = 0
• penetration: vz = const.,ur = 0

The results of Cudmani show that the radius, at which the void ratio (e) experiences a
change of 1% of its initial value, is half of the radius at which pressure components (pr

and pz) reach 1% change in their initial value. Results of calculations with the hypoplas-
tic model without intergranular strain concept underestimate the experimental values for
penetration force obtained in experiments with Ticino [4], Toyoura [15], Monterey [46]
and L. Buzzard [23] sands. Cudmani explains that the underestimation of penetration
force when no intergranular strain concept is implemented could be attributed to changes
in the direction of deformation, which lead to stiffer response of soil and cannot be mod-
eled without intergranular strain concept.

4.4.2 Large displacement finite element method

Aubram [2] has analyzed the penetration into sand by means of an Arbitrary Lagrangian-
Eulerian method (ALE) particularly developed for plane and axisymmetric penetration
into sand. The developed ALE method breaks up solution of the governing equations
over a time step into a Lagrangian step, and a mesh regularization step. Simulations have
been carried out with the hypoplastic model proposed by Gudehus [19] and Bauer [7]
with the intergranular strain concept proposed by Niemunis and Herle [39]. Aubram re-
ported the large variation of the soil stiffness at the free surface and underneath the cone
as a challenge which may lead to an ill-conditioned stiffness matrix and therefore, stable
and robust simulations are usually hard to achieve. In his simulations, the pile is assumed
to be rigid and its surface is assumed to be perfectly smooth. The dimensions of the com-
putational domain in the three models are 250 mm×700 mm = 5D×14D, (D = 50 mm)
which comply with the configuration of the experimental tests in Sec. 4.2. It needs to
be mentioned that Aubram has considered an artificial capillary pressure of 0.1 kPa in
order to improve the stability at very low mean effective stress levels. Comparison of
numerical with experimental results are shown in Fig. 4.7.
Zöhrer [63] carried out discrete element method (see Sec. 4.4.3) and FEM simulations
with ALE adaptive remeshing for further investigation of the CPT procedure. For FEM
calculations with ALE adaptive mesh, the non-associated Drucker-Prager failure crite-
rion and the hypoplastic constitutive model were used 6.
Zöhrer mentions that the increase of voids between particles as a result of penetration in
circumferential direction can be modeled properly by DEM and continuum mechanical
methods can deal with loosening in circumferential direction only under high compres-
sive stress so that the loosening leads only to reduction of the compressive stress. How-

5Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin. Reproduced with per-
mission of Shaker Verlag GmbH.

6Zöhrer does not mention exactly which version of hypoplasticity has been implemented for FEM sim-
ulations.
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Figure 4.7: Comparison of the measured and predicted load-displacement curves of pile
penetration for pile with conical tip, Dr = 21% (adapted from Aubram [2], Fig. 8.23)1

ever, results of FEM regardless of the uppermost centimeters of the penetration, have
shown better accuracy and a plausible dependency of the penetration resistance on the
input parameters compared to DEM.
Van Den Berg [56] has applied an extension of the updated Lagrangian description to
an Eulerian formulation (ALE). As for the constitutive model, Drucker-Prager criterion
has been applied. van den Berg et al. models the cone as a fixed boundary with interface
friction and the boundaries are defined by spring elements. The initial K0 condition is
applied for stress state and the simulation is conducted wished in place. The process of
penetration is applied by incremental displacements at the lower boundary of the mesh.
Susila and Hryciw [48] have used an auto-adaptive FEM method for simulation of cone
penetration test. Sand behavior is simulated by Drucker-Prager constitutive model and
Coulomb friction law has been implemented for the interface. The type of mesh adaptiv-
ity used, is the r-adaptivity scheme, in which the distorted mesh is changed by relocating
nodes without adding or deleting degrees of freedom. Susila and Hryciw do not use the
wished in place method as opposed to the study conducted by Van Den Berg, therefore,
the horizontal stresses on the cone are not underestimated. Furthermore, in their simula-
tions, the vertical displacements on the top of the soil are constrained.

4.4.3 Discrete element method

Zöhrer [63] conducted discrete element simulations for further investigation of the cone
penetration. His results show that the field of displacement is not smooth at all (see
Fig. 4.8). Furthermore, particles at a radius of 0.5D from the shaft have a radial and
downward movement and the particles out of this range have an upward movement, par-
ticles at the bottom of the model also show irregular directions. Throughout the process,
smaller particles are pushed into pores between larger particles.
Wang and Zhao [59] conducted 2D discrete element method simulations in crushable
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Figure 4.8: Displacement vectors of particles obtained by discrete element method
(adapted from Zöhrer [63])

sands. The crushable sand was modeled only around the pile. The validation of their
model has been done by comparing the results with published centrifuge and calibration
chamber tests. The boundaries of the model are set to 30 ·D while the crushable zone is
limited to 2 ·D width and 27 ·D depth, in the middle of the model. The strains obtained by
Wang and Zhao are compared with the experimental results of White [60], see Sec. 4.2,
and are found to be in good agreement.
Finally, Wang and Zhao report that the two factors, controlling the the tip resistance in
their model are, in situ stress and particle breakage.

4.5 Simulation of cone penetration with SPARC

The simulation of the cone penetration into sand was a challenging task for SPARC and
no noticeable penetration depths could be obtained in the scope of this study. Many
attempts were made at achieving this goal, which can be classified in two groups: (i)
ideas which can be considered as modification of framework of SPARC (discussed in
Sec. B) and (ii) efforts at defining the boundary condition of the penetrating cone.
In the first series of attempts, the penetrating cone was simulated with adherent particles,
this assumption does not correspond to the reality, though. Adherent particle means that it
is fixed in the horizontal direction and in the vertical direction the velocity is prescribed
equal to the velocity of the penetration. The boundary condition of adherent particles
causes unreasonable stress states and void ratios for particles lying on the cone and the
simulation aborts before a notable penetration depth is achieved.
In the second series of attempts, the penetrating cone is assumed to be perfectly smooth.
Therefore, two different smooth boundary conditions were implemented in SPARC for
the smooth cone which are explained in the following sections. The penetration depth
in case of the perfectly smooth cone was even less than the boundary condition with
adherent particles.
Last but not least, I must mention here that throughout this study many other attempts
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were made towards simulation of cone penetration, which are presented shortly here,
• Different initial geometries, e.g. modeling half of the model by benefiting from

the symmetry
• Different initial distribution of particles, e.g. irregular distribution or modeling a

column of particles on the symmetry line or not
• Considering different initial void ratios or different initial stress states by applying

different values for p in Eq. 1.2
• Repeating the simulation for all the constitutive models explained in Chp. A and

linear elastic material model
• Defining different search radii for the neighboring particles.
• Searching for new neighbors after each time step or maintaining the initially searched

neighbors from the first time step.
All these unsuccessful attempts could be considered valuable for future studies with
SPARC. Since they mean that for simulation of cone penetration with SPARC either
the framework of the code needs to undergo modifications or the cone needs to be mod-
eled differently.
All in all, our investigations show that simulating a moving kinematic boundary con-
dition by means of soft particles which are actually soil particles can work well only
for problems where the boundary does not penetrate into the continuum like the upper
plate in oedometer, biaxial or triaxial tests or when the penetration is relatively small like
simulation of punching (see Chp. 3) or cone penetration for small penetration depths.

4.5.1 Geometry of the problem and plane strain condition

For the simulation of CPT, the experiments conducted by Aubram [2] are used. A half-
cylindrical pile with a conical segment with a diameter of D = 50 mm is used to model
cone penetration. However the simulations in SPARC are conducted in 2D with plane
strain condition. The penetrating cone has a length of 650 mm and the maximum pene-
trating depth is 400 mm which is equal to dp/D ≈ 8, where dp is the depth of penetration.
For detailed dimensions and geometry of the penetrating pile with cone tip, see Fig. 4.9.
The minimum boundary distance to the periphery of the penetrating cone is S/D = 5,
the chamber of the experiment has a depth of 891 mm and the depth of the sand in the
chamber is about 700 mm.

Plane strain condition

As it is discussed in Sec. B.1, the attempt at simulating the cone penetration in axisym-
metric SPARC failed. The simulations presented in this section are conducted in plane
strain condition and correctly speaking, the penetration of a prism into soil is simulated
and not the penetration of a cone.

4.5.2 Wall and bottom boundaries

The particles lying on the vertical walls of the model have freedom of movement in
vertical direction and the slip boundary condition as explained in Eq. 1.3 is applied on
the walls. The particles on the bottom are free to move in horizontal direction with the
same boundary condition explained in Eq. 1.3.
On the ground surface, the static boundary condition as explained in Eq. 1.2 is applied.
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Figure 4.9: Geometry of the model

For the pressure p in Eq. 1.2 a value of 60 kPa is chosen so as to avoid tensile stresses.
Furthermore, tension control as explained in Sec. 1.7 is applied to the stress tensor after
each time step.

4.5.3 Initial stress

The initial stress is assumed to be a K0-state, with K0 = 0.47 (see Sec. 3.3.3). The stress
grows linearly with depth,

Tzz = γ · z, (4.1)

and,

Tyy = Txx = K0 ·Tzz, (4.2)

with γ = 15.71 kN/m3 for e0 = 0.71. In this chapter only the simulation results conducted
with the material model after Kolymbas (2011) introduced in Sec. A.2.1 are presented.
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Figure 4.10: Vectors for explanation of Boundary condition I

4.5.4 Smooth cone - boundary condition I

For the simulation of a penetrating cone with smooth surface, the following boundary
condition for the cone is implemented in SPARC. It is not claimed that solving the equi-
librium equation on the boundary of the cone is strictly correct. The cone has a constant
vertical velocity vs = [0,vs]

⊺. The unit normal and tangential vectors (en and et) on the
cone are determined. For particles lying on the cone, we consider the normal component
vn and the tangential component vt (see Fig. 4.10). vn is determined as follows,

vn = (vs · en) · en. (4.3)

For vt, the equilibrium equation ∇ ·T+ρg = 0 is calculated and projected in the tangen-
tial direction as follows,

(∇ ·T+ρg)t = ((∇ ·T+ρg) · et) · et. (4.4)

By means of Newton solver, a tangential velocity will be determined that fulfills the
following requirement,

|(∇ ·T+ρg)t| ≤ ε,

where ε is the accepted tolerance. After vt is determined, the total velocity of the particle
is known as the sum of the normal and the tangential velocities,

v = vt +vn.

Finally the components of the acquired velocity in y- and z-directions are determined,

vy = v · ey, vz = v · ez.

Results of smooth cone - boundary condition I

The solution obtained (velocity field) by the solver for four different relative penetration
depths are plotted in Fig. 4.11, the red arrows show the velocities obtained for the cone
by solving the boundary condition explained in Sec. 4.5.4. Unfortunately, the simulation
breaks after reaching a maximum relative penetration depth dp/D = 0.047. In Fig. 4.12
the velocities around the cone and the velocities at the cone for the smooth boundary
condition I are plotted. In the first glance, one can deduce that by increasing penetration,
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the velocity field looks less smooth and the obtained velocities make less sense. For
example in Fig. 4.12 for dp/D = 0.04 and 0.047. The two columns of particles lying on
the left and right side of the symmetry line move inwards instead of moving outwards,
which contradicts the expectation that particles should be pushed away by the penetrating
cone. The velocities obtained at the cone have from the beginning of the simulation an
inward inclination, which means that these particles are not pushed away as the cone
approaches them.

4.5.5 Smooth cone - Boundary condition II

In this section, the boundary condition for smooth surface, as explained in Eq. 1.3 is
applied for simulation of a smooth cone. Eq. 4.5 demands that the shear stresses on the
shaft and tip of the cone disappear,

e⊺n ·T · et = 0. (4.5)

For the particles lying on the cone, we consider the normal component vn and the tan-
gential component vt (see Fig. 4.13). vn is determined with Eq. 4.3. For determination
of vt, first the stress vector t is calculated,

t = T · en, (4.6)

and projected in the tangential direction as follows,

(t)t = t · et. (4.7)

By means of Newton solver, a tangential velocity will be determined that fulfills the
following requirement,

|(t)t| ≤ ε,

where ε is the accepted tolerance. After vt is determined, the total velocity of the particle
is the sum of the normal and the tangential velocities,

v = vt +vn.

Finally the components of the acquired velocity in y- and z-directions are determined,

vy = v · ey, vz = v · ez.

Results of smooth cone - boundary condition II

In Fig. 4.14 a comparison of obtained velocities at the cone for both smooth boundary
conditions is shown. Although there are still oscillations present in the obtained veloc-
ities, the velocities at the cone for boundary condition II have mainly outward compo-
nents, which is in agreement with the expectation that particles at the vicinity of the cone
should be pushed away.
The obtained velocity field for the above smooth boundary condition is plotted in Fig. 4.15.
The maximum relative penetration depth is almost the same as for the boundary condi-
tion introduced in Sec. 4.5.4. However, the boundary condition II offers two advantages.
Firstly, the velocity field is smoother and the velocities of particles make better sense,
compare Figs. 4.12 and 4.16.
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dp=D = 0 dp=D = 0:02

dp=D = 0:04 dp=D = 0:047

Figure 4.11: Obtained solution (velocity field) for increasing relative penetration depths,
dp/D, the red arrows represent the obtained velocities at the cone, smooth cone-boundary
condition I, see Fig. 4.12 for zoom of velocities around the smooth cone
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dp=D = 0 dp=D = 0:02

dp=D = 0:04 dp=D = 0:047

Figure 4.12: Zoom of obtained solution (velocity field) around the cone for increasing
relative penetration depths, dp/D, the red arrows represent the obtained velocities at the
cone, , smooth cone-boundary condition I
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Figure 4.13: Vectors for explanation of Boundary condition II

boundary condition I boundary condition II

Figure 4.14: Comparison of obtained velocities for smooth boundary conditions, Left:
boundary condition introduced in Sec. 4.5.4, right: boundary condition introduced in
Sec. 4.5.5

4.5.6 Adherent particles

The maximum relative depth dp/D = 0.35 is obtained for adherent particles. Adherent
particle means that for the cone particles the velocity in the vertical direction is pre-
scribed and the horizontal velocities are set to zero. It must be mentioned that SPARC
was able to reach the relative depth of dp/D = 0.35 through the implementation of ”re-
conditioning of the solution” (explained in Sec. 1.8). Without benefiting from this feature
in SPARC, relative depths of only 0.1 were possible to obtain. In Fig. 4.17 the obtained
velocities for different relative depths are plotted. The velocity field is almost smooth in
the initial stages of the penetration, however, one can detect oscillations in Fig. 4.17 for
dp/D = 0.35, especially on the soil surface and near to the cone. In Fig. 4.18 the zoom
of the results in the vicinity of the cone for the corresponding relative depths is plotted.
In Fig. 4.19, the development of void ratio and the norm of stress throughout the simu-
lation for one particle on the surface of the cone are plotted. Fig. 4.19 shows how the
norm of stress for an adherent particle grows enormously throughout the simulation and
its void ratio becomes negative (see also Sec. B.6). It is important to mention that this
particle is not the particle on the tip of the cone, where it is expected to observe strong
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dp=D = 0 dp=D = 0:02

dp=D = 0:03 dp=D = 0:04

Figure 4.15: Obtained solution (velocity field) for increasing relative penetration depths,
dp/D, the red arrows represent the obtained velocities at the cone, smooth cone-boundary
condition II, see Fig. 4.16 for zoom of velocities around the smooth cone
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dp=D = 0 dp=D = 0:02

dp=D = 0:03 dp=D = 0:04

Figure 4.16: Zoom of obtained solution (velocity field) around the cone for increasing
relative penetration depths, dp/D, the red arrows represent the obtained velocities for the
cone, smooth cone-boundary condition II
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densification and even grain breakage, but lies on the shaft of the cone. A precise look
at the velocity field adjacent to the cone in Figs. 4.17 and 4.18 shows how the adherent
boundary condition pulls the surface and neighboring particles throughout the simula-
tion towards the cone. On the other hand, the adherent particles are fixed in horizontal
direction and cannot move away. Therefore, it is reasonable for the adherent particles to
experience excessive densification and large changes in stress. These results show that
the boundary condition of adherent particles is not correct and leads to unreasonable val-
ues of void ratio, density and stress.
In Fig. 4.19, a jump in both diagrams at the same calculation progress of t ≈ 500 can
be observed. The jump occurs when the void ratio of the particle becomes negative
and afterwards, the |T| grows with a steeper slope. A closer look at the material model
Kolymbas 2011 explained in Sec.A.2.1 and its f function (Eq. A.8), shows that the f

function delivers large values for negative void ratio and consequently, the response of
the material model becomes stiffer.
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dp=D = 0 dp=D = 0:2

dp=D = 0:26 dp=D = 0:35

Figure 4.17: Obtained solution (velocity field) with adherence at the cone surface for
increasing relative penetration depths, dp/D, the red arrows represent the prescribed ve-
locities at the cone for adherent particles, see Fig. 4.18 for zoom of velocities around the
cone
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dp=D = 0 dp=D = 0:2

dp=D = 0:26 dp=D = 0:35

Figure 4.18: Zoom of obtained solution (velocity field) with adherence around the cone
for increasing relative penetration depths, dp/D, the red arrows represent the prescribed
velocities at the cone for adherent particles
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Figure 4.19: Left: changes in void ratio of a particle adherent to the shaft of the cone
over time. Right: growth of the norm of stress |T| normalized by the norm of stress at
|Tt=0| for a particle adherent to the shaft of the cone (t has no physical meaning and only
represent the progress of calculation)



5 Turbulence in granular solids

5.1 Introduction

In this chapter the vortices that appear in the course of deformation of granular solids is
considered. To denote this vorticity we use the word ”turbulence”, which is established in
fluid mechanics. Of course, in fluids turbulence has to do with a surplus of kinetic energy,
whereas the motions of sand considered here are slow. Thus, turbulence in granulates is
not exactly the same as turbulence in fluids, but in both cases the appearance of vortices
is predominant. I do not adopt the word "granulence", that has been proposed Radjai and
Roux [43] for turbulence in granulates.

5.2 Element tests and their controllability

”Element tests” are by definition tests with spatially constant stress and deformation. The
latter means that the displacements (or velocities) depend in a linear (or affine) way on
the spatial coordinates x. Therefore, an inhomogeneous displacement field is also called
a non-affine displacement field.
In order to deduce stress-strain relations from laboratory tests, they must be element test.
Otherwise it is not possible to infer the stress and strain from the measured forces and
displacements, respectively. For an element test to be ”controllable” at a particular stress
state T, one must,

1. prescribe
a) the boundary displacements (or velocities) as linear dependent on the bound-

ary coordinates xB: vB = AxB, with A = const, in one part of the boundary,
and

b) the boundary tractions t = TBnB in the complementary part of the boundary.
2. Inequality 5.6 must be fulfilled.

In the words of Revuzhenko, the fulfillment of v = Ax on the boundary of an element
test implies its fulfillment also in the interior of the sample (provided (i) absence of mass
forces and (ii) uniqueness of response) Revuzhenko [44].
It is common in soil mechanics to assume that triaxial tests with smooth end plates are
element tests at the beginning of the deformation, until an inhomogeneous mode of defor-
mation (usually a localized shear band) sets on at a certain bifurcation point. In particular,
oedometric tests with smooth side walls and end plates are considered as unconditionally
controllable, i.e. having homogeneous deformation.
However, smooth side walls and end plates impose the normal velocity but not the tan-
gential velocity. Thus, the boundary velocities are not fully prescribed. Therefore, nei-

ther oedometric nor triaxial tests are necessarily related with unique deformation of
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sample. This implies that inhomogeneous (non-affine) deformation can appear even at
the very beginning of the test and can be manifested with vortices. There is plenty of
evidence of vortices in granular media, observed with DIC (digital image correlation)
and also with DEM simulations. The special case of shear bands can be interpreted as
so-called vortex sheets, i.e. as planar arrays of vortices.
In the laboratory, rigid confinements of a sample are either smooth or, in the ideal case,
absolutely rough. In the first case the boundary displacements are not fully prescribed,
in the second case no deformation is allowed adjacent to the boundary. In either cases,
rigid confinements are inappropriate for element tests.

5.3 Uniqueness of response

Positive second order work implies controllability but not uniqueness of stress in a labo-
ratory test. To show this we consider a constitutive equation of the rate type,

T̊ = h(T,D), (5.1)

that expresses the stress rate as function of stress T and stretching D. This ansatz ap-
plies equally to elastoplastic, hypoplastic and barodetic constitutive equations. It can be
written also in the form,

Ṫ = H D with H :=
∂h(T,D)

∂D
, (5.2)

with H(D) being the stiffness matrix. An affine deformation within a sample whose
boundary undergoes an affine motion v(xB) = AxB with A = const can be obtained
under the following condition expressed by Eq. 5.6. Clearly, the affine motion v = Ax

is a solution of the boundary value problem, if we neglect gravity. We consider whether
this solution is unique. Assume that there exists also another solution v̄ 6= v. Denoting
differences with the symbol ∆, e.g. ∆v = v − v̄, we observe that ∆v vanishes at the
boundary. The equilibrium equation reads ∇ ·T = 0, and continued equilibrium reads
∇ · Ṫ = 0. The same equations hold also for the stress difference ∆T := T− T̄: ∇ ·∆T = 0

and ∇ ·∆Ṫ= 0. Now we consider the integral I :=
∫

V ∇ ·(∆Ṫ∆v)dV and apply the theorem
of Gauss. We thus obtain, that this integral vanishes,

∫

V
∇ · (∆Ṫ∆v) dV =

∫

S
∆Ṫ∆v ·n dS = 0, (5.3)

because ∆v = 0 on the surface S. Further,

I =
∫

V
∇ · (∆Ṫ∆v) dV =

∫

V
∆T ∇ ·∆v dV +

∫

V
∆v ∇ ·∆Ṫ dV = 0. (5.4)

The second integral on the right hand side vanishes due to continued equilibrium. Thus,
for non-uniqueness must hold,

∫

V
∆Ṫ ·∇∆v dV ≡

∫

V
∆Ṫ ·∆D dV = 0, (5.5)

which is impossible if ∆Ṫ ·∆D > 0 holds everywhere (the notation ∆Ṫ ·∆D denotes the
same as tr(∆Ṫ∆D)). Hence the condition,

tr(∆Ṫ∆D)> 0, (5.6)
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Figure 5.1: Schematic illustration of the oedometric test

implies uniqueness. For the special case v̄ = 0 we have: tr(∆Ṫ∆D′) =tr(ṪD). Hence,
tr(∆Ṫ∆D) > 0 implies positive second order work: tr(ṪD) > 0, but the latter condition
does not imply uniqueness.
Consider for example the oedometric test (Fig. 5.1) whose boundary conditions are kine-
matic. It is generally assumed that the deformation of a sand sample in the oedometer is
homogeneous. However, this is not necessary, as already mentioned, since the tangential
velocity along the walls is not prescribed. We decompose the velocity v in the mean
velocity v̄ and its fluctuation v′:

v = v̄+v′. (5.7)

With en1 , en2 and en3 being the unit normal vectors at the upper plate, lower plate and
side wall, respectively, the boundary conditions read,

v · en1 = v̄ · en1 =V, v′ · en1 = 0, (5.8)

v · en2 = v̄ · en2 = v′ · en2 = 0, (5.9)

v · en3 = v̄ · en3 = v′ · en3 = 0, (5.10)

(5.11)

where V is the vertical velocity of the piston. Consequently, the velocity fluctuation v′

is tangential to all boundaries. According to a theorem by Kelvin and Helmholtz on
the impossibility of irrotational motions in general (cited by Truesdell [55], section 37),
the field v′ is in this case either rotational or zero. The latter case corresponds to the
homogeneous deformation, which is of course possible.

5.4 Vortices observed in physical tests

Vortices can be observed in laboratory tests with Digital Image Correlation (DIC). The
vortices appear in the fields of velocity fluctuations v′ = v − v̄. In Fig. 5.2 velocity
fluctuations in a 1γ2ε-apparatus are demonstrated. In Figs. 5.3 and 5.4 the vortices in
a biaxial test in softening regime and critical state, respectively, are presented.

1Geotechnique Letters by Institution of Civil Engineers (Great Britain) Reproduced with permission of
Thomas Telford, Ltd. in the format Republish in a thesis/dissertation via Copyright Clearance Center.

2GRANULAR MATTER by SPRINGER-VERLAG. Reproduced with permission of SPRINGER-
VERLAG in the format Thesis/Dissertation via Copyright Clearance Center.
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Figure 5.2: Velocity fluctuations obtained with Digital Image Correlation in 1γ2ε-
apparatus filled with rods, Richefeu et al. [45]1

Figure 5.3: Post-peak (softening) sequence
of velocity fluctuations within shear bands
in biaxial tests with dense sand, obtained
with Digital Image Correlation, Abedi et al.
[1]2

Figure 5.4: Post-peak (residual or criti-
cal state) sequence of velocity fluctuations
within shear bands in biaxial tests with
dense sand, obtained with Digital Image
Correlation, Abedi et al. [1] 2
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Figure 5.5: Velocity fluctuations in simple shear simulated with DEM by Thornton, left:
start of shear, right: at 8% shear strain, Thornton and Zhang [53]3
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Figure 5.6: Vortex structures obtained with DEM simulation of a direct shear test, Koz-
icki et al. [32]2

5.5 Vortices obtained with DEM simulations

Admittedly, DEM simulations do not necessarily mirror the reality. However, they often
reveal realistic pictures of the deformation. There are several reports on vortices in the
fluctuation velocity fields, obtained with DEM, such as the ones shown in Fig. 5.5 for
simple shear test, in Fig. 5.6 for direct shear test and in Fig. 5.7 in a triaxial test.

5.6 Numerical simulation of vortices with SPARC

Firstly, the oedometric test is chosen for our demonstrations, because it is generally be-
lieved that this test has a homogeneous (affine) deformation, whereas we prove here that
this is not necessarily the case. In our numerical simulations we consider lengthy oedo-
metric samples, which are unusual, because the vortices, the diameter of which depends
on the dimensions of the container, are there more pronounced.
In order to demonstrate that the formation of vortices is independent from the applied

3Philosophical Magazine Reproduced with permission of Taylor & Francis in the format The-
sis/Dissertation
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Figure 5.7: Velocities in a triaxial test sample with bender elements, numerical simula-
tions with DEM, O’Donovan et al. [40]2

Linear elastic HypoplasticityHypoplasticity Barodesy

Figure 5.8: Comparison of vortices for three different material models in oedometric test

material model, firstly a comparison of an oedometric test with smooth upper and lower
plates with three different material models is shown in Fig. 5.8. The three material mod-
els are, (i) linear elastic with E = 1000 MPa and ν = 0.25, (ii) hypoplastic material model
after von Wolffersdorff 1996 described in Sec. A.2.3 and (iii) barodesy after Kolym-
bas 2015, described in Sec. A.2.2. The results show that regardless of the selected ma-
terial model, the vortices follow almost the same pattern. We consider now oedometric,
biaxial and simple shear tests simulated with the material model after Kolymbas 2015,
described in Sec. A.2.2. The stress-strain relationships of oedometer, true biaxial and
simple shear tests with the above mentioned material model is shown in Fig. 5.9. In
Fig. 5.10 we show the development of vortices with increasing deformation in an oedo-
metric test with rough upper and lower plates. No particular pattern of the vortices can
be detected and the vortices look different with increasing εzz. Since Fig. 5.10-f, gives
the impression of non-vanishing fluctuations adjacent and normal to the upper plate, a
zoom of this figure at the upper plate is plotted in Fig. 5.11.
In Fig. 5.12 the development of vortices with increasing deformation in an oedometric
test with smooth upper and lower plates is plotted. In contrast to Fig. 5.10 an almost con-
stant pattern of vortices can be detected in this case. The vortices are mainly formed at
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Figure 5.9: Stress-strain curves for oedometer (left), true biaxial (middle) and simple
shear simulations (right), recpectively

a b c d e f

Figure 5.10: Development of vortices with increasing oedometric deformation, at the
strains indicated in Fig. 5.9 - left, rough upper and lower plates. Fig. f gives the impres-
sion of non-vanishing normal fluctuations adjacent to the upper plate. Therefore, a zoom
is plotted in Fig. 5.11

Figure 5.11: Zoom in of Fig. 5.10-f



76 CHAPTER 5. TURBULENCE IN GRANULAR SOLIDS

a b c d e f

Figure 5.12: Development of vortices with increasing oedometric deformation, at the
strains indicated in Fig. 5.9 - with smooth upper and lower plates

a b

c

Figure 5.13: Influence of the sample size, a) h0/B = 2.5, b) h0/B = 1.25 and c)
h0/B = 0.5 - rough upper and lower plates

the upper and lower plates with a rotational pattern and lose their intensity in the middle
of the sample.
In Fig. 5.13 the effect of the dimension of the model on the development of the vortices
in an oedometric test with rough upper and lower plates is offered.
In Fig. 5.14 the influence of density of the particles on the vortices is shown. It can
be seen that vortices are still detectable for large values of d (less number of particles).
However the vortices have a simpler pattern and as the spacing (d) gets smaller and the
number of particles increases the vortices become more complex.
In Fig. 5.15 is the development of vortices with increasing deformation in a true biaxial
test shown. At the beginning of the deformation, Fig. 5.15-a, the vortices show a simple
pattern of rotation. With increasing deformation, the vortices form an almost symmetri-
cal pattern with rotations in opposite directions.
In Fig. 5.16 the development of vortices with increasing deformation in a simple shear
test is shown 4. In Fig. 5.16-a, at the beginning of the deformation, the vortices show a
rotational pattern. However with increasing deformation, the rotational shape of vortices
disappears and the vortices move to the top left of the sample.

4Simulation of simple shear test is conducted by considering the convective acceleration, see Sec. B.7.
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a b c

Figure 5.14: Influence of the density of particles (initial spacing size d in the oedometric
test simulation) a) d = 50 mm, b) d = 25 mm and c) d = 12.5 mm - rough upper and
lower plates

a b
c

Figure 5.15: Development of vortices with increasing biaxial deformation at the strains
indicated in Fig. 5.9 - middle

a b c

Figure 5.16: Development of vortices with increasing simple shear deformation at the
strains indicated in Fig. 5.9 - right
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Figure 5.17: Effect of turbulences on the stress-strain relationship - development of dif-
ference in Tzz with increasing oedometric deformation

5.7 Physical explanation of the vortices

The superposition of vortices to an affine deformation imply a superimposed shear, and
this reduces the volumetric stiffness and, consequently, also the overall stiffness of con-
tractant media. In microscopic terms, the irreversible deformation of granulates is related
to rearrangement of ”rigid” grains, which can hardly occur with affine deformations.
Thus, vortices may originate from grain re-arrangement, see also Tordesillas et al. [54].

5.8 Implications for element tests

For an oedometric test, the stress-strain curve obtained from direct integration of the
material model is compared with the one from SPARC, by which the state variables
are influenced from the turbulences (see Fig. 5.17-a). The mean value of Tzz for the
simulation with turbulences is calculated as follows,

T zz =

∫ ymax
ymin

Tzz ·dy

ymax − ymin
, (5.12)

where ymin and ymax represent the horizontal boundaries of the model. In Fig. 5.17-
b, δ demonstrates the difference in the vertical stresses Tzz with and without vortices.
Obviously, this difference is very small.

5.9 Ptygmatic folds

Ptygmatic folds are a peculiar pattern of folding in rock (see Fig. 5.18). The general
assumption is that ptygmatic folds occur when a sheet of stiffer rock (termed as ”compe-
tent”) is confined by a softer host material and undergoes plastic deformation, according
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Figure 5.18: Ptygmatic fold in rock5

to Godfrey [17]. Here we show that ptygmatic folds can be a consequence of turbulent
deformations of geomaterials.

5.9.1 Simulation of ptygmatic folds with SPARC

Ghosh [16] conducted several experiments with plastic materials such as modeling clay
for investigation on formation of ptygmatic folds. Ghosh’s experiments were mainly
conducted in simple shear test. The results of his investigations are demonstrated in
Figs. 5.19.
For the simulation of ptygmatic folds with SPARC a model of simple shear test with
initial height of 50 cm and width of 10 cm in plane strain condition has been simulated
(see Fig. 5.20). The gray particles in Fig. 5.20 have an initial void ratio of e0 = 0.5 and the
red ones on the material line at y= 0.05 m have an initial void ratio of e0 = 0.4. The lower
void ratio for the red particles leads to a more competent behavior of the material line (y=
0.05 m) in comparison to the host gray particles. A homogeneous setup is also simulated,
by which all particles have the same initial void ratio of e0 = 0.5. The simulation is
repeated for a homogeneous setup in order to investigate if the appearance of ptygmatic
folds is due to the presence of a competent material confined by less competent host
material or not. The material model of barodesy for clay introduced in Sec. A.2.4 with
the calibration for Dresden clay (see Tab. A.4) is applied for the simulation.

5Outcropedia Reproduced with permission of photographer: Rodolfo Carosi, University of Torino.
6Tectonophysics by ELSEVIER BV. Reproduced with permission of ELSEVIER BV in the format

Thesis/Dissertation via Copyright Clearance Center.
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Figure 5.19: Ptygmatic fold in modeling clay under simple shear deformation (adapted
from Ghosh [16])6
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Figure 5.20: Geometry of the model, the red particles in the middle of the model rep-
resent the ”competent material line” with reduced void ratio of e0 = 0.4, the gray host
particles have an initial void ratio of e0 = 0.5
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Figure 5.21: Deformation of material line (y = 0.05 m) in simple shear test for setup with
competent material
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Figure 5.22: Deformation of material line (y = 0.05 m) in simple shear test for homoge-
neous setup

Results

The deformation of the material line (y = 0.05 m line in Fig. 5.20) with increasing shear
strain (εzy) is plotted in Fig. 5.21. The material shows minute folds at εzy = 0.3. How-
ever as the sample is sheared further, the ptygmatic folds along the material line become
more apparent until for εzy = 0.7 the fold becomes significant. The obtained ptygmatic
fold under simple shear deformation is comparable with the experimental results of Gosh
demonstrated in Fig. 5.19.
In Fig. 5.22, the deformation of the material line (y = 0.05 m) for homogeneous setup
and increasing shear strain is plotted. In contrast to Fig. 5.21, no folds can be detected
along the material line and which keeps its initial form throughout the simulation.
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with competent
material line

homogeneous
setup

Figure 5.23: Comparison of vortices for homogeneous setup (left) and setup with com-
petent material line (right), εzy = 0.7

In Fig. 5.23, the vortices at εzy = 0.7 are compared for the simulation with homogeneous
setup and the simulation with the competent material line. The vortices differ from each
other clearly and in case of the setup with competent material line, the vortices are in
correspondence with the deformed material line in Fig. 5.21.
The question arises why no ptygmatic folds can be detected in Fig. 5.22, although vor-
tices for the homogeneous setup (Fig. 5.23, left) are detectable. This question can be
answered by investigating the intensity of vortices. In Fig. 5.24, the norm of turbulence,
|v′|, is plotted for different variations in the void ratio of the competent material line,
where ∆e = 0 represents the homogeneous setup and ∆e = 20 % means e0 = 0.4 for the
competent material line. As it can be seen, for ∆e = 0, the norm of fluctuation becomes
very small (|v′| = 1.5× 10−13 m/s) and with increasing ∆e, the intensity of fluctuation
becomes 4×109 times larger and reaches |v′|= 6×10−4 m/s.
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Figure 5.24: Fluctuation (v′) in dependence of void ratio of the competent material line,
∆e = 0 represents the homogeneous setup and ∆e = 20 % means e0 = 0.4 for the com-
petent material line





6 Summary and outlook

6.1 Summary

In the first chapter, the framework of Soft PARticle Code (SPARC) and its improvements
in the scope of this work are presented. The reconditioning of the solution, defining the
smooth boundary condition and consideration of the convective acceleration have proved
to be effective for the simulations in this work. Concerning the interpolation methods, a
comparison of three different interpolation functions has been conducted and the results
have been compared with the analytical (exact) solution. It has been shown that first
order polynomial without the constant term and with the least number of required neigh-
bors delivers the more accurate and smoother derivatives and has therefore been applied
for all the simulations in this study.

In the second chapter, firstly a numerical case study for oedometric and triaxial tests
regarding the number of particles and the loading/unloading velocity is presented. It has
been shown that the results are in agreement with the element test, as long as the defor-
mations are homogeneous. However, in case of the triaxial test, where the deformations
become inhomogeneous, the solver suffers from convergence problems and the success-
ful simulation of the triaxial test is not always possible. In the second part of chapter two,
the formation of shear bands in clay is simulated. Results show that SPARC is capable
of modeling shear bands and that the number of particles has influence on the shape,
thickness and inclination of the shear bands.

In the third chapter, punching into sand is simulated. The two improvements of re-
conditioning the solution and defining the smooth boundary condition were helpful in
successful simulation of punching with SPARC. The results have been validated by com-
paring them with the experimental results. SPARC has been able to predict the peak of
the load-displacement curve at the same penetration depth obtained in the experiments.
Furthermore, the shape of the slide planes formed under the foundation are comparable
with the experimental and analytical results.

In the fourth chapter, firstly a brief description of former studies on cone and pile penetra-
tion is provided. In the second part, it has been attempted to simulate the cone penetration
with SPARC. Two different smooth boundary conditions followed by an adherent parti-
cle boundary condition have been introduced and the results are compared. The deepest
penetration could be achieved with adherent particles. The results show that the proposed
boundary conditions are not appropriate for the this problem and further investigations
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in this direction are required.

In the fifth chapter, SPARC has been applied for derivation of vortex patterns in de-
formations which were beforehand believed to be homogeneous. These results are of
importance, since it is the first time (to my knowledge) that a numerical method based on
continuum mechanics has been employed for this purpose. The effect of turbulent defor-
mations on ptygamatic folds is studied by simulating a simple shear test with a competent
material line and the obtained vortices are compared with the vortices acquired for a ho-
mogeneous material.

In appendix A, the basics of barodesy are explained and a list of all the material models
which were used in this study with their calibration is presented.

In appendix B, a comprehensive explanation of the unsuccessful attempts for the simu-
lation of cone penetration is provided. Although these attempts have been unsuccessful,
they can form a basis for further research going in this direction.

6.2 Outlook

The mediocre simulation of cone penetration with SPARC in the present work prompts
motivation for further research. The present research has proved that the problem of cone
penetration demands a more advanced boundary condition for the cone. It must be men-
tioned that contact problems and roughness are of importance in numerical simulation of
problems in soil mechanics and extra effort in this direction would be worthy.

A further improvement of the present code would be the incorporation of interpolation
methods which are capable of delivering smoother results. A number of attempts were
made in this direction (see Secs. B.4, B.5, B.9, and B.10), however, they did not prove
to be beneficial. One of the main deficiencies of the current interpolation methods is that
they cannot make good approximations when the deformations become large or when
the particles change neighbors.

Another relevant research would be in the direction of improving the solution finding
procedure in SPARC. It has been shown that e.g. for the problem of punching, the re-
conditioning of the solution at the peak of the load-settlement curve was helpful and
afterwards the solver could continue without reconditioning. Therefore, the author sug-
gests taking into account such provisional improvements for the Newton solver which
can be applied over a number of time steps when required (e.g. see Sec. B.8).

Another further development of the code would be to implement an algorithm which
continuously checks for the quality of the approximation of spatial derivatives and adds
or removes particles accordingly.

SPARC is in its early years of development and it can be improved in many dimensions.
A number of modifications have been made based on the above-mentioned suggestions,
however due to time limitations, other solutions and ideas could not have been examined.



A Material models

The balance equations and boundary conditions introduced in Chp. 1 are not sufficient
for solving the problems of continuum mechanics. Material models, as explained in
Sec. 1.5, are required in order to take into account the changes in the stress tensor due to
the deformations. In this chapter we explain the basics of hypoplastic material models,
especially the barodetic material models. In this work simulations are conducted and
compared for sand and clay. For the simulations with sand two versions of barodesy
are applied introduced by Kolymbas in [25], [28] and the hypoplastic material model
introduced by von Wolffersdorff [58]. Barodesy for clay, as a modification of the original
barodesy introduced by Medicus and Fellin [37] is used for simulations with clay.

A.1 Basics of barodesy

Barodesy is based on two fundamental experimental findings for sand, referring to pro-
portional paths. Proportional stress and strain paths are paths that maintain constant
ratios of the principal values T1 : T2 : T3 and ε1 : ε2 : ε3, respectively. The following rules
were derived by Goldscheider [18],

• starting from the stress-free state, proportional strain paths lead to proportional
stress paths,

• starting from a non stress-free state, while applying a proportional strain path, the
stress state leads asymptotically to the proportional stress path obtained from the
stress-free state.

In Fig. A.1, the first rule is demonstrated for four different proportional strain paths.
The first proportional stress path is the isotropic compression, by which the sample is
compressed in both principal directions equally and leads to i stress path in Fig. A.1,
right. For the oedometric proportional strain path, the K0 stress path is obtained. Lastly
for the isochoric compression and extension paths the critical state lines, characterized
by +c and −c are acquired.
In Fig. A.2, the second rule is demonstrated. For a non stress-free state, the black point
in Fig. A.2 right, if a proportional strain path is applied to the sample, e.g. oedometric
compression or isochoric extension, the stress state approaches asymptotically the stress
path obtained for the stress-free condition.
In barodesy, a tensor which defines the direction of a proportional stress path as a function
of the rate of deformation is denoted by R. However, since the function R denotes only
the direction, therefore it must be a function of the normalized rate of deformation D0.

R(D) = R
(

D0) (A.1)
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−Dzz

−Dyy

−Tzz

−Tyy

isotropic compression

i

oedometric compression

K0

isochoric compression

+c

isochoric extension

−c

Figure A.1: Illustration of the first rule for isotropic compression, oedometric compres-
sion, isochoric compression and isochoric extension - beginning from the stress-free
state, proportional strain paths lead to proportional stress paths, Dzz and Dyy are the com-
ponents of the stretching tensor D

−Dzz

−Dyy

−Tzz

−Tyy

oedometric compression

K0

isochoric extension

−c

Figure A.2: Illustration of the second rule - starting from a non stress-free state and
applying a proportional strain path (e.g. oedometric or isochoric extension), the stress
state leads asymptotically to the proportional stress path obtained from the stress-free
state
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−Tzz

−Tyy

R

T T̊

λ T̊

µR

Figure A.3: Mathematical interpretation of the second rule

Fig. A.3 states that from a non-zero stress state, (T 6= 0), changes in the stress (T̊) are so
that the stress state asymptotically reaches the proportional stress path predicted by R.
Therefore, if T̊ and R are multiplied with the scalars λ and µ we can write,

T+λ T̊ = µR(D). (A.2)

If we eliminate T̊ from Eq. A.2, a general evolution equation for the stress is obtained,

T̊ = ν1R(D)+ν2T, (A.3)

where ν1 and ν2 are scalar values which are determined in compliance with barotropy
(dependence of material behavior on stress |T|) and pyknotropy (dependence of material
behavior on density/void ratio). For detailed determination of the scalar values the reader
is referred to Kolymbas [28].
The final barodectic equation has the following form,

T̊ = h( f R0 +gT0)|D|, (A.4)

where h(T) is responsible for stiffness and the scalar values f and g, as discussed earlier
are so determined to model the mechanical behavior of granular materials. The scalar val-
ues f and g are mainly determined so that the material model can reproduce soil behavior
at peak and in critical state. As demonstrated in Fig. A.4, at the peak of the stress-strain
curve, the rate of stress T̊ vanishes. Furthermore, volume changes are positive, which
means that tr(D0) as a measure of dilatancy must be positive and the void ratio is smaller
than the critical void ratio ec. On the other hand, when soil reaches the critical state (see
Fig. A.4), the stress state T̊ and volume changes must vanish simultaneously, which re-
quires T̊ and tr(D0) to become equal to zero. Lastly, the void ratio must also reach the
value of void ratio at the critical state, i.e. e = ec.

A.2 Applied material models

In Sec. A.1 an insight into the experimental and mathematical principles of the barodetic
material models was offered. Interested readers can refer to Kolymbas [27], Kolym-
bas [25], Kolymbas [30], Kolymbas [26], Kolymbas [28], Fellin [14], Kolymbas [27],
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(
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Figure A.4: Demonstration of state variables at peak and critical state for a dense sample

c1 c2 c3 c4 c5 c6 ec0

-0.8 -0.9 0.6 -5000 -3000 1000 0.78

Table A.1: Calibration of barodesy for sand after Kolymbas (2011) for Hostun sand [25]

Medicus [36], Medicus and Fellin [37] for further information about barodesy for sand
and clay. In the rest of this chapter, the main equations of the material models used in
this study are explained with their calibration. It must be mentioned that the calibration
constants are offered for stresses in kPa.

A.2.1 Barodesy: a new hypoplastic approach, Kolymbas (2011)

The barodetic model reads,

T̊ = h(T) ·
(

f R0 +gT0) · |D|, (A.5)

where,
h(T) = |T|c3 , (A.6)

R(D) =
(

trD0)1+ c1 exp
(

c2D0) , (A.7)

f = c4tr
(

D0)+ c5(e− ec)+ c6, (A.8)

g =−c6, (A.9)

ec = (1+ ec0)exp

( |T|1−c3

c4(1− c3)

)

−1. (A.10)

For the simulations in this study, the calibration of barodesy for Hostun sand is used with
the constants summarized in Tab. A.1.
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c1 c2 c3 c4 c5 ec0 emin

-1.0246 1 -2.3 465 28 0.87 0.35

Table A.2: Calibration of barodesy for sand after Kolymbas (2015) for Hostun sand [28]

A.2.2 Introduction to Barodesy, Kolymbas (2015)

The barodetic model reads,

T̊ = h(T) ·
(

f R0 +gT0) · |D|, (A.11)

where,

h =−c4 + c5|T|
e− emin

, (A.12)

f = tr(D0)+ c3ec, (A.13)

R =−exp
[

c1 exp
(

c2 · tr
(

D0))D0] , (A.14)

g =−c3e, (A.15)

ec =
emin +B

1−B
, (A.16)

B =
ec0 − emin

ec0 +1

(

c4 + c5 · |T|
c4

)−(1+emin)/c5

. (A.17)

A.2.3 Hypoplastic relation of von Wolffersdorff (1996)

T̊ = fb fe

1

tr(T̂2)

{

F2D+a2 tr(T̂ ·D) · T̂+ fd ·a ·F · (T̂+ T̂∗) · |D|
}

, (A.18)

T̂ =
T

trT
, (A.19)

T̂∗ = T̂− 1
3

I, (A.20)

a =

√
3(3− sinϕc)

2
√

2sinϕc

, (A.21)

F =

√

1
8

tan2ψ +
2− tan2ψ

2+
√

2 tanψ cos3θ
− 1

2
√

2
tanψ, (A.22)

tanψ =
√

3|T̂∗|, (A.23)

cos3θ =−
√

6
tr(T̂∗ · T̂∗ · T̂∗)
[

tr(T̂∗ · T̂∗)
]3/2

, (A.24)

fd =

(

e− ed

ec − ed

)α

, (A.25)
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Material
ϕc

[◦]

hs

[MPa]

n

[-]

ed0

[-]

ec0

[-]

ei0

[-]

α

[-]

β

[-]

Aubram’s experiment sand 31.5 76500 0.29 0.48 0.78 0.9 0.13 1

Hostun sand 33.8 1000 0.29 0.61 0.91 1.09 0.13 2

Table A.3: Calibration of hypoplastic material model after von Wolffersdorff (1996) for
model test sand in Aubram’s experiments [2] and Hostun sand

fb fe =
hs

n

(

1+ ei

ei

)

·
(

ei0

ec0

)β

·
(ec

e

)β
·
(

− tr T

hs

)1−n

·
[

3+a2−
√

3a

(

ei0 − ed0

ec0 − ed0

)α]−1

,

(A.26)
ei

ei0
=

ec

ec0
=

ed

ed0
= exp

[

−
(

−trT

hs

)n]

. (A.27)

where,
ei : the loosest void ratio by isotropic compression (pressure dependent)
ec : critical state void ratio (pressure dependent)
ed : void ratio at maximum densification (pressure dependent)

A.2.4 An improved version of barodesy for clay, Medicus and Fellin (2017)

T̊ = c3|T|c4 · ( f R0 +gT0) · |D|, (A.28)

R =−exp
(

αD0) , (A.29)

α =
lnK

√

3/2− trD02/2
, (A.30)

K = 1− 1
1+ c1(m− c2)2 , (A.31)

m =
−3trD0

√

6−2trD02
, (A.32)

f = c6 ·β · trD0 − 1
2
, (A.33)

g = (1− c6) ·β · trD0 +

(

1+ e

1+ ec

)c5

− 1
2
, (A.34)

ec = exp

(

N −λ ∗ ln
2p

σ∗

)

−1, (A.35)

β =− 1
c3Λ

+
1√
3

2c5λ ∗ − 1√
3
, (A.36)

Λ =−λ ∗−κ∗

2
√

3
trD0 +

λ ∗+κ∗

2
. (A.37)
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c1 c2 c3 c4 c5 c6

0.028 -3.6213 -356.408 1 3.69 0.704

Table A.4: Determination of the constants for Dresden clay with ϕc = 35◦, N = 0.622,
λ ∗ = 0.038 and κ∗ = 0.008, Medicus and Fellin (2017) for Dresden clay





B Unsuccessful attempts

Simulation of the cone penetration was one of the main goals of this study, however,
this goal could not be achieved as desired. Meshfree methods are young and still need a
lot of trial and error until they are fully developed. SPARC also as one of the youngest
meshfree methods, is not an exception. Although the process was despairing, the main
supervisor and the author did not surrender and persistently sought for solutions. The
attempts did not always work, nevertheless, we believe publishing them in the scope of
this study is of importance for further investigations as it can possibly help to avoid these
attempts. The attempts can be divided in two categories, the first category consists of
general modification of procedure of SPARC. Meanwhile, the second category consists
of methods suggested specifically for the problem of cone penetration (e.g. defining
different boundary conditions for the penetrating cone), as discussed and explained in
Chp. 4. Among the first group of attempts, some are explained in the following sections.

B.1 Axisymmetric SPARC

Since cone penetration test is a problem with axisymmetric conditions, cylindrical coor-
dinates had to be implemented.

B.1.1 Cylindrical coordinates

In cylindrical orthogonal coordinates, the Cartesian coordinates (x, y, z) are mapped into
(r, ϑ , z) through the relations:

x = r cosϑ , y = r sinϑ , z = z,

and in case of axisymmetry, where ∂
∂ϑ = 0, the position vector reads,

p = r er + z ez, (B.1)

where êr and êz are the unit vectors in the direction of increasing r and z, respectively
(see Fig. B.1).
Since for the problem of cone penetration can be assumed that the angular velocities (vϑ )
are equal to zero, the velocity vector can be defined as,

v = vr er + vz ez. (B.2)
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Figure B.1: Vector p in cylindrical coordinates rϑz

B.1.2 Velocity gradient

Since we assume that vϑ = 0, the velocity gradient can be simplified as,

∇v =















∂vr

∂ r
0 ∂vr

∂ z

0 vr

r
0

∂vz

∂ r
0 ∂vz

∂ z















. (B.3)

However Eq. B.3 needs to be further considered for particles lying on the symmetry
line, since the radial velocity vanishes for these particles and on the other hand for the
symmetry line is r = 0. Therefore, the component ∇v(2,2) of particles lying on the
symmetry line is unknown,

For r = 0 ∇v(2,2) =
vr

r
=

0
0
.

By assuming that the spatial derivative of radial velocities with respect to r vanishes at
r = 0 and applying the L’Hôpital’s rule, we obtain,

lim
r→0

vr

r
=

∂vr

∂ r
= 0,

for particles lying on the symmetry line.
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Tzz

Tzr

Tϑϑ

Figure B.2: Stress tensor T in cylindrical coordinates

B.1.3 Stress tensor and Cauchy equation

The stress tensor T has the following form in cylindrical coordinate. For the interpreta-
tion of each stress component, see Fig. B.2.

T =











Trr 0 Trz

0 Tϑϑ 0

Tzr 0 Tzz











. (B.4)

The Cauchy equation of motion (Eq. 1.1) has the following form in cylindrical coordi-
nate,

∂Trr

∂ r
+

∂Tzr

∂ z
+

1
r
(Trr −Tϑϑ ) = 0, (B.5)

∂Trz

∂ r
+

∂Tzz

∂ z
+

1
r

Trz +ρbz = 0. (B.6)

The third term in the Eq. B.5 for particles on the symmetry line (r = 0) also needs to
be further considered. It is assumed that at the beginning of the simulation Trr = Tϑϑ ,
therefore,

1
r
(Trr −Tϑϑ ) =

0
0
.

Again by applying the L’Hôpital’s rule, we obtain,

lim
r→0

1
r
(Trr −Tϑϑ ) =

∂Trr

∂ r
− ∂Tϑϑ

∂ r
= 0.

The condition of Trr = Tϑϑ holds not only for the first step but also for the rest of the
simulations, since for particles on the symmetry line ∇v(1,1) = ∇v(2,2) = 0, which
means that for these particles throughout the simulation Trr is equal to Tϑϑ .
The same consideration for particles on the symmetry line is also required for the third
term in Eq. B.6. On the symmetry line the shear stresses are equal to zero, therefore,

1
r

Trz =
0
0
.
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Figure B.3: Determination of velocities on the surface in the first sub-step (left), deter-
mination of velocities for field particles in the second sub-step (right)

By means of L’Hôpital’s rule, we have

lim
r→0

1
r

Trz =
∂Trz

∂ r
= 0.

B.1.4 Failure

The obtained velocity field for simulations in axisymmetric condition was not sensi-
ble and the oscillations were stronger in comparison to 2D simulations. Furthermore,
the particles on the symmetry line in axisymmetric condition are free to move only

in the vertical direction. Therefore, the outward movement of the symmetry particles
cannot be simply simulated. One attempt to deal with this problem was to free the
”nearest particle to the tip of the cone” in the radial direction when the tip of the cone
comes to the vicinity of the particle. However, after the particle was freed in the radial
direction, the Newton solver could not find a solution and the simulation broke.

B.2 Predetermined velocities on the surface

The free boundary surface seemed to be the first volunteer for the problems associated
with the simulation of cone penetration. As Chen also mentions in [11], the free bound-
ary condition could be one of the reasons, why the simulation of the "zig-zag" test did
not work.
In the procedure of SPARC as explained in Sec. 1.5, the equilibrium equations (Eq. 1.1)
for field particles are simultaneously solved with the prescribed pressure (traction) bound-
ary condition (Eq. 1.2).
In the proposed method, the velocities of particles are determined in each time step, in
two ”sub-steps”. In the first sub-step, the prescribed pressure (traction) boundary con-
dition for particles lying on the surface of the model is solved and the velocities of the
particles on the surface are determined (see Fig. B.3-left). In the second sub-step, the
velocities of the field particles are determined, while the velocities on the surface from
the first sub-step are applied to the surface (see Fig. B.3).
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B.2.1 Failure

This procedure did not offer any further advantages in comparison to the standard proce-
dure of SPARC and the obtained relative depth for the simulation of the cone penetration
was almost the same as that obtained with the standard procedure.

B.3 Static boundary condition through eigenvalues

In this attempt, the boundary tractions are defined through the eigenvalues of the stress
tensor. The conventional procedure of SPARC as introduced in Sec. 1.5 is applied to
update the stress tensor to time step t +∆t. However, instead of solving the boundary
condition with prescribed traction in Eq. 1.2, the equilibrium equation (Eq. 1.1) with a
modification of the stress state for surface particles is solved. The modification in the
stress state is explained here,

• The three eigenvalues (T1, T2 and T3) of the stress tensor Tt+dt are calculated,

Ti =











T1 0 0

0 T2 0

0 0 T3











.

• The first eigenvalue T1 is set equal to the prescribed traction (T1 = p),

Tii =











p 0 0

0 T2 0

0 0 T3











.

• For the particle, the three orthogonal vectors are calculated as follows,

en =











n1

0

n3











, et =













√

n3
2

n1
2+n3

2

0

−
n1

√

n3
2

n1
2+n3

2

n3













, ex =











0

±1

0











,

and saved in Q matrix, where en is the unit normal of the surface and the two
unknowns of et are determined by considering the orthogonality of et to en and
|et|= 1. The vector ex remains constant, since the problem is considered in plane
strain conditions,

Q =













n1

√

n3
2

n1
2+n3

2 0

0 0 ±1

n3 −
n1

√

n3
2

n1
2+n3

2

n3
0













.

• The new stress state is acquired by rotating the stress tensor Tii to the Cartesian
coordinates,

Tt+dt
new = QTiiQ−1.
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• Tt+dt
new is used to calculate the equilibrium equation (Eq. 1.1) for the particles which

represent the static boundary.

B.3.1 Failure

The convergence of the solver was possible for a number of time steps. However, the
oscillations of the obtained velocities on the surface were stronger in comparison to the
standard procedure. Therefore, the simulation broke earlier before a noticeable relative
depth was reached.

B.4 Rearrangement of particles

The idea is to create a regular arrays of particles (black particles in Fig. B.4). The field
values (v,T,e,ρ) of the new particles are calculated by interpolating from the values of
the old particles (the gray particles in Fig. B.4).
The newly created particles are located regularly around the pile/cone. The new regular
distribution of particles was thought to give SPARC the advantage that in every time step,
the particles will have sufficient and appropriate number of neighbors due to the regular
distribution and thus the interpolation quality should be improved.
However, the creation of a regular array of particles is only possible if we neglect the
deformation of the surface of the model and replace the deformed surface with a hori-
zontal line which e.g. corresponds to the initial height (h0) of the model at time step t = 0.

In the following this procedure is explained in details,

1. At time step t, all the field values (vt ,Tt ,et ,ρ t) and position xt are known for the
current particles.

2. A new regular distribution of particles is created in accordance to the current loca-
tion of the penetrating cone/foundation (the black particles in Fig. B.4).
These new regular particles are created around the pile and on the initial height
of the model (h0) and therefore the geometry of the deformed ground surface is
replaced with a horizontal line.

3. The field values of the old particles are taken as input data for the interpolation of
the field values of the newly created particles.

4. The interpolated field values are assigned to the new regular particles.

5. Neighbors for the new regular particles are searched.

6. Time step t +∆t is calculated with the new particles.

7. This procedure could be repeated at every time step.

B.4.1 Failure

The suggested attempt did not offer any particular advantage in comparison to the stan-
dard procedure and the obtained relative depth was almost the same as the one ob-
tained by the standard procedure. Furthermore, the obtained solution (velocities) was
not smoother as opposed to the one obtained without the rearrangement of particles.
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old particles
new particles
pile particles

h0

ht

Figure B.4: Rearrangement of particles, black particles are the new regular particles, gray
particles are the old particles with irregular distribution and the red particles represent the
current location of the cone at time step t

B.5 Regular arrays of interpolation points

In order to improve the quality of interpolation, the following procedure was investigated.
Let us assume that at time step t, the spatial derivative of the field value q at particle p

(the blue particle in Fig. B.5) is required. q could be a component of velocity field or a
component of the stress tensor.

(

∂q

∂x

)

p

= ?

In the current framework of SPARC, the neighbors of particle P which lie in a fixed cir-
cle with radius r are searched and the spatial derivatives are calculated by means of the
neighboring particles.
In the suggested procedure, firstly, a set of well-ordered interpolation points are cre-
ated on the circumference of a circle with radius r around particle P (the red points in
Fig. B.5). The particle P itself is also one of the interpolation points.
In the next step, the values of neighboring particles (the green particles in Fig. B.5) are
used to interpolate the field value q for each interpolation point.

Finally,
(

∂q

∂x

)

P
is approximated by means of the well-ordered interpolation points. This

procedure was expected to give the advantage to SPARC that for the approximation of
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Figure B.5: Demonstration of soft particles and interpolation points

spatial derivatives, always a sufficient number of interpolation points, which are also
appropriately located around particle P are available. One can consider applying this
procedure only to an area of the continuum where the deformations are large so as to
reduce the calculation time.

B.5.1 Failure

The Newton solver could not converge even for the first time step and the norm of the
error became too large after the first and the second iteration of the Newton solver.

B.6 Exclusion of boundary particles

In the investigations with adherent boundaries (for walls or the penetrating cone), it was
observed that the stress state, void ratio and density of boundary particles reached un-
reasonable values (see Sec. 4.5.6). For example, the norm of stress tensor for particles
adherent to the shaft of the cone reached values 15000 times larger than the initial norm
of stress tensor and the void ratio became negative. In the first place, such results prove
that adherent boundaries are not appropriate for simulation of large deformations. Fur-
thermore, adherent boundary conditions do not correspond to reality, so that a particle
which represents the soil body sticks to the cone and experiences the same displace-
ments like the cone. On the other hand, implementing smooth kinematic boundaries for
the cone is not an easy task.
The suggested attempt was to define two groups of neighboring particles. The first group
of neighbors, which include adherent boundary particles (see Fig. B.6 - left), are used for
interpolation of velocity gradient at particle P. The second group of neighboring particles
do not include adherent boundary particles and is used for interpolation of the divergence
of stress (see Fig. B.6-right) at particle P. Consequently, the influence of unreasonably
large or small values of stress state in the interpolation of the divergence of the stress
could be avoided.

B.6.1 Failure

The problem with this idea is that a larger support size needs to be chosen so as to assure
that an adequate number of neighbors are available for interpolation of gradient of stress.
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r

adherent boundary particles

neighboring particles

particle P

Figure B.6: Left: neighbors for interpolation of velocity gradient - Right: neighbors for
interpolation of divergence of stress

However, as it is shown in Sec. 1.9.6, the quality and accuracy of interpolation worsens
with increasing support size (r) and consequently the acquired solution (velocities) were
not smooth and the simulation broke after a few time steps.

B.7 Convective acceleration

One of the main challenges throughout this study was to deal with oscillations in the
obtained solution (e.g. see Fig. B.7-left). Oscillations in the velocities are also reported
by Chen [11] for the simulation of "zig-zag" test. SPARC is not the only meshfree method
that suffers from oscillations, as it is shown and discussed in I. Michel, I. Bathaeian et
al.[38], the meshfree Finite Pointset Method (FPM), whose results are compared with
the results of SPARC, has problems with oscillations. Unfortunately, the main cause
of oscillations in SPARC is not known to the author. However, it is assumed that the
oscillations of velocities can be a culprit that the solver can find no solution or cannot
find the right solution after some time steps. Therefore, in order to avoid the oscillations,
the convective acceleration was implemented in SPARC with a numerical density ρn

which can be either chosen equal to the real density of the soil ρ or have a different
value. ρn can be so long varied until the solver converges. However, it is important to
mention that the initial stress state is not calculated with ρn and it does not influence the
stress state in soil.
The equilibrium equation of motion with consideration of the convective acceleration for
a 2D problem reads1,

∂Tyy

∂y
+

∂Tyz

∂ z
= ρn

(

vy

∂vy

∂y
+ vz

∂vy

∂ z

)

, (B.7)

∂Tzy

∂y
+

∂Tzz

∂ z
+ρg = ρn

(

vy

∂vz

∂y
+ vz

∂vz

∂ z

)

. (B.8)

1The problem is considered to be quasi-static and therefore the term ∂v
∂ t

is negligible.
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B.7.1 Failure and success

The convective acceleration did not prove to help with the simulation of cone penetration
and punching. Nevertheless, for the simulation of simple shear test (see Sec. 5.6), im-
plementation of the convective term was helpful. Simulation of simple shear without the
convective acceleration was not possible and the Newton solver failed after some time
steps.

B.8 Explicit solver

The explicit method was implemented in SPARC for the determination of the unknown
velocities at time step t +∆t. It was intended to be applied either to the whole process
of simulation or to be used as an alternative when the Newton solver is not capable of
finding a solution.
The unknown velocities are set to zero or the solution from the former time step t is used
as an initial guess. The known velocities on the kinematic boundaries are applied. For
each particle, the residuum of governing equations for each degree of freedom (unknown
velocities) is calculated and stored in the vector r. The vector r contains the residua of
governing equations, (r1, r2 and r3) as shown in Fig. 1.7.
If the norm of r does not fulfill the prescribed tolerance, the unknown velocities will be
updated. For this purpose the acceleration of each particle in the y- and z-directions is
calculated with Eq. B.9,

b =
∇ ·T

ρ
+g. (B.9)

Next the velocities are updated,

vt+∆t = vt +b ·∆t, (B.10)

and the densities are also updated with Eq. 1.10 calculated with the update velocities
vt+∆t . The norm of the residua (r) is calculated again with the updated velocities (vt+∆t)
and compared with the prescribed tolerance.
The above procedure is repeated as long as the norm of the residua of the governing
equations, |r|, is smaller than the tolerance, which means that the accelerations have
vanished and the particles are in quasi-static state.

B.8.1 Fourth-order Runge-Kutta integration

In order to get a more precise estimation of the acceleration, the fourth-order Runge-
Kutta integration, according to Butcher [10], was implemented,

vt+∆t = vt +b ·∆t, (B.11)

with b,

b =
b1 +2b2 +2b3 +b4

6
,

where,
b1 = f (t,vt), (B.12)
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b2 = f (t +
∆t

2
,vt +b1

∆t

2
), (B.13)

b3 = f (t +
∆t

2
,vt +b2

∆t

2
), (B.14)

b4 = f (t +∆t,vt +b3∆t). (B.15)

B.8.2 Failure

The explicit solver was implemented for simulation of an oedometer test and the obtained
solution showed stronger oscillations in comparison to the standard procedure of SPARC.
Besides, the explicit solver needs far more computing time.

B.9 Moving average smoothing

In SPARC, the solution from time step t is used as the first guess of the Newton solver
for time step t+∆t. The solution delivered at time step t is not always smooth, especially
after the deformations have become large. In an attempt to improve the first guess for the
following time step, a moving average smoothing was implemented in SPARC, by which
the smoothed value of each particle is the mean value of this particle and its neighboring
particles. If particle i has bi neighbors, then the field variables are smoothed as follows,

vi ⇐
1
bi

bi

∑
j=1

v j, (B.16)

Ti ⇐
1
bi

bi

∑
j=1

T j, (B.17)

ei ⇐
1
bi

bi

∑
j=1

e j, (B.18)

ρi ⇐
1
bi

bi

∑
j=1

ρ j. (B.19)

B.9.1 Failure

This attempt did not prove to be efficient and the Newton solver could not converge with
the smoothed solution from the former time step. However, the smoothing method is
applied in preparing the figures and final results in this study. In Fig. B.7 the velocity
field for simulation of the settlement of shallow foundations into sand before and after
application of the moving average smoothing method is compared.

B.10 Smoothing the spatial derivatives

In another attempt to avoid the oscillations in the obtained solution, the moving average
smoothing method, introduced in Sec. B.9, was directly applied to the spatial derivatives
of velocity field and stress tensor.
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Figure B.7: Left: velocity field without application of moving average smoothing (os-
cillations in the velocities are apparent)-right: velocity field after application of moving
average smoothing

B.10.1 Failure

The convergence of the Newton solver was not possible and the norm of the error became
too large after the first or the second iteration of the solver.
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