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Abstract In geotechnical engineering, simulations are of utmost importance. Due
to large deformations, meshfree methods are more suitable than classical meshbased
methods. Nevertheless, they have to be validated on the laboratory scale in order
to guarantee reliable conclusions for real life applications. In this contribution, we
complete the theoretical description of the two novel meshfree generalized finite dif-
ference methods Finite Pointset Method (FPM) and Soft PARticle Code (SPARC) by
numerical results for the standard benchmark problems oedometric and triaxial test.
We focus on the quality of the results as well as on the rate-independent character of
the numerical implementation of the nonlinear barodesy model for sand.

Keywords Generalized finite difference methods · Meshfree methods ·
Finite Pointset Method (FPM) · Soft PARticle Code (SPARC) · Barodesy model
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1 Introduction

As a granular material, soil is often exposed to large, non-topological deformations.
Classical meshbased methods struggle in these cases, even if remeshing capacities
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are used. Due to their intrinsic characteristic, discretization without fixed connectivi-
ties, meshfree methods enjoy great popularity. In Chen et al. (2017), the progress of
meshfree techniques during the last 20years is described with special focus on large
deformation problems. These techniques can be separated into five categories: gener-
alized finite element methods (GFEM), generalized finite volume methods (GFVM),
generalized finite difference methods (GFDM), discrete element methods (DEM), and
generalized mass point methods (GMPM). Making no claim to be complete, appli-
cations in geomechanics can be found e.g. in Abe et al. (2017), Bandara and Soga
(2015), Bardenhagen et al. (2000), Beuth et al. (2011, 2013), Bhandari et al. (2016),
Blanc (2008), Blanc and Pastor (2013), Bui and Fukagawa (2011), Bui et al. (2015),
Carbonell et al. (2013), Chen (2014), Coetzee et al. (2005), Cuéllar et al. (2009), Dang
and Meguid (2013), Dufour et al. (2001), Gabrieli et al. (2009), Holmes et al. (2011),
Hu et al. (2015), Jassim et al. (2012), Jiang and Yin (2012), Kardani et al. (2017),
Khoshghalb and Khalili (2012, 2013, 2015), Komoróczi et al. (2013), Kuhnert and
Ostermann (2014), Lim andAndrade (2014),Michel andKuhnert (2015),Michel et al.
(2017),Murakami et al. (2005), Obermayr et al. (2013), Obermayr andVrettos (2013),
Oñate et al. (2011a, b), Ostermann et al. (2013), Pastor et al. (2008), Peng et al. (2015),
Polymerou (2017), Schenkengel and Vrettos (2011), Schneider-Muntau et al. (2017),
Sloan et al. (2016), Soga et al. (2015), Tootoonchi et al. (2016), Uhlmann et al. (2013),
Vermeer et al. (2008), Wu et al. (2001), and Zhu et al. (2006).

In the first part of this contribution, Ostermann et al. (2013), we discussed the
application of two GFDMs to model standard benchmark problems in soil mechanics
(oedometric and triaxial test). Both methods integrate the rate-independent barodesy
model of Kolymbas (2011, 2012), which describes anelastic soil behavior. The pre-
vious theoretical considerations are completed by numerical results presented here.
Both the Finite Pointset Method (FPM) and the Soft PARticle Code (SPARC) use an
implicit approach to solve the occurring partial differential equations on a finite set of
numerical points.1 The points move according to the velocity of the continuum in a
Lagrangian framework. In FPM, the nonlinear barodesy model is integrated into the
standard coupled velocity-pressure formulation by local linearization resulting in a
large, sparse linear system of equations which is solved by a BiCGStab(2) algorithm.
The condition number of the linear system strongly depends on the number of FPM
points. If necessary, regularization strategies are available. In contrast to that, SPARC
directly solves the nonlinear problem by a Newton iteration scheme. Thus, SPARC
exactly models the material model at the cost of solving a large, sparse nonlinear
system of equations.

In addition to these basic numerical characteristics, the discretization and approx-
imation strategies differ: (1) FPM is based on an unstructured point cloud which is
continuously checked for its quality. This guarantees the applicability of the method
to a large variety of problems in fluid and continuum mechanics. A moving weighted
least squares procedure with polynomials up to second order is used for functional
approximation on the point cloud. For details on FPM see e.g. Drumm et al. (2008),
Jefferies et al. (2015), Kuhnert (2009, 2014), Kuhnert and Ostermann (2014), Michel

1 Although the wording is different, points in FPM and particles in SPARC, both notations stand for
numerical points without mass.
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and Kuhnert (2015), Michel et al. (2017), Ostermann et al. (2013), Suchde and Kuhn-
ert (2017), Suchde et al. (2017a, b), Tiwari and Kuhnert (2002a, b, 2004, 2005, 2007),
Tiwari et al. (2007), and Tramecon and Kuhnert (2013). (2) The initial particle con-
figuration in SPARC is regular; quality checks are not performed during a simulation.
The regular character of the particle configuration reduces the number of neighbors
necessary in the weighted moving least squares procedure (polynomials up to first
order) considerably compared to the one in FPM. Details on SPARC can be found in
Chen (2014), Polymerou (2017), and Schneider-Muntau et al. (2017).

In Sect. 2, the laboratory tests and their corresponding setups for the oedometric
and the triaxial test are described. These are the basis of the following case studies
for FPM and SPARC in Sects. 4 and 5, respectively. For both meshfree methods the
influence of the most important parameters is analyzed with respect to quality and
the ability to reproduce the rate-independent character of the barodesy model for
loose and dense sand samples. The results of the respective element tests are used
as reference. The necessary evaluation strategy (from 3D simulation result to stress-
strain-curve etc.) is presented in Sect. 3, including the specific simulation setups for
the different scenarios. The numerical results for FPM and SPARC are compared in
Sect. 6, followed by conclusions in Sect. 7.

2 Laboratory tests

As described in Ostermann et al. (2013), two popular benchmark problems in soil
mechanics are the oedometric and the triaxial test. The oedometric one is known as
a confined compression test (see Holtz and Kovacs (1981)), which is equivalent to a
homogeneous 1D compression scenario. The soil sample is loaded in axial direction
and rigid side walls hinder any lateral expansion, see Fig. 1. In contrast to this, in a
conventional triaxial test the soil sample is enclosed in a thin rubber membrane and
placed between two plates inside a pressure chamber. The sample is then loaded in
axial direction by the stress component σ1 and by constant lateral stresses σ2 = σ3,
which is denoted as confining pressure σc (see Fig. 2).

2.1 Oedometric test

The lab measurements for the oedometric test refer to a cylindrical sample of Hostun
sand with height of 0.025m and diameter of 0.0945m. Details can be found in Desrues
et al. (2000). In oedometric lab tests the height of the sample is minimized in order

F

Filter

Soil Sample

Loading Plate

Fig. 1 Schematic illustration of the oedometric test
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Fig. 2 Schematic illustration of the triaxial test

Table 1 Setup for oedometric tests

Dense sample Loose sample

Initial void ratio e = 0.667 e = 0.8703

Initial density ρ = 1590 kg/m3 ρ = 1416.9 kg/m3

Loading-unloading-
process (until axial
strain −ε1)

0 − 0.0045 − 0.0037 − 0.0071
− 0.0051 − 0.0098 − 0.0062
− 0.0140 − 0.0077 − 0.015

0 − 0.01 − 0.0092 − 0.0122
− 0.011 − 0.0164 − 0.0138
−0.0222−0.0175−0.0245

to reduce friction effects that might spoil the measured vertical displacements. We
consider both a dense and a loose setup according to Table 1. Please note that in
reality oedometric tests are stress-controlled, i.e. a particular force is applied to the
loading plate and the deformations aremeasured over the course of time. Subsequently,
the strains are calculated from the recorded plate displacements. However, in our
simulations the oedometric test is simulated strain-controlled referring to the loading-
unloading-processes defined in Table 1 with respect to axial strain −ε1. Throughout
this contribution we adopt the convention of mechanics: compression is negative,
tension is positive.

To predict themechanical behavior ofmaterials with the help of numerical schemes,
we have to rely on constitutive models, such as the nonlinear barodesy model used in
Ostermann et al. (2013). This rate-independent material model is given by an evolution
equation for the Cauchy stress tensor T = −σ (with principal stresses σ1, σ2, σ3) in
combination with an evolution equation for the void ratio e:

Ṫ = H(T,D, e), ė = (1 + e) · tr(D),
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Fig. 3 Oedometric test—comparison of lab measurement and element test: stress-strain-curves for dense
(a) and loose sand (b)

where H is a nonlinear tensorial function (including constants c1, . . . , c6, ec0) and D
is the stretching tensor (i.e. the symmetric part of the velocity gradient). The material
constants for Hostun sand, which is considered in the current lab measurements, are
c1 = −1.7637, c2 = −1.0249, c3 = 0.5517, c4 = −1174, c5 = −4175, c6 = 2218,
ec0 = 0.8703.

In Fig. 3, we compare the lab measurements for the chosen oedometric setup with
the results obtained for the corresponding element test. In an element test the baro-
desy model is integrated for one numerical point with respect to the given boundary
conditions. The agreement of element test and lab measurement solely depends on the
quality of the constitutive model, i.e. barodesy. However, the focus of our contribu-
tion is not the analysis of the constitutive model but the quality of the considered 3D
numerical schemes FPM and SPARC. Hence, the comparison of lab measurement and
element test is illustrated only for the sake of completeness.

2.2 Triaxial test

For the triaxial test we proceed according to the description above. We consider a
cylindrical soil sample of Hostun sand with height and diameter of 0.1m, see Desrues
et al. (2000). The setup is given in Table 2. The comparison of lab measurement and

Table 2 Setup for triaxial tests Dense sample Loose sample

Initial void ratio e = 0.6324 e = 0.8442

Initial density ρ = 1623.4 kg/m3 ρ = 1436.9 kg/m3

Confining pressure −σc = 100 kPa −σc = 100 kPa
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Fig. 4 Triaxial test—comparison of lab measurement and element test for dense (a, c) and loose sand (b,
d): stress-strain-curve (first row) and volumetric-axial-strain-curve (second row)

corresponding triaxial element test can be found in Fig. 4, where the volumetric strain
is given by εv = tr(ε) with strain tensor ε defined as ε̇ = D.

For both the oedometric as well as the triaxial test the element test based on the bar-
odesy model shows a relatively good agreement with the lab measurements. However,
there still is potential to enhance this constitutivemodel to better fit thematerial behav-
ior. Specific enhancements for sand have been developed in Medicus et al. (2016) and
Kolymbas (2015). For barodesy for clay see Medicus et al. (2012) and Medicus and
Fellin (2017).

The aim of this contribution is to illustrate the quality of the 3D numerical schemes
FPM and SPARC by realistically simulating oedometric and triaxial test scenarios for
the above described setups. To this end, in Sects. 4 and 5we compare the 3D simulation
results to the respective element test since it is not the task of the numerical scheme to
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fit the lab measurement but the task of the constitutive model. The numerical scheme
can only be as good as the constitutive model.

3 Setup and evaluation strategy for 3D simulations

The case studies for FPM and SPARC in Sects. 4 and 5, respectively, are based on the
following simulation setups independent of the test type and the sample type:

simulation setup I—fixed reference loading/unloading rate, varying sample res-
olution (interaction radius for FPM and number of particles for SPARC)
simulation setup II—fixed sample resolution, varying loading/unloading rate
(based on the reference level)

In order to compare the 3D simulations to the corresponding element test, the
necessary 1D stress-strain-curves and stress paths are generated by averaging the
considered quantity over all points/particles at the loading plate. The volumetric-axial-
strain-curves are generated by averaging over all points/particles of the simulated soil
sample to accommodate the volumetric character.2 Note that a consistent comparison
of the results is guaranteed by considering the axial strain in logarithmic form. The
relation between logarithmic and engineering strain is

ε
log
1 = ln(1 + ε

eng
1 ),

where ε
eng
1 = current height/initial height (of the soil sample).

4 Case study for FPM

In this section,we present a case study for FPMfor the dense and loose setups described
inTables 1 and2.Themost important parameters in the numerical schemeare analyzed:
the interaction radius h, which determines the number of FPM points used to represent
the soil sample; the loading/unloading rate vp, which is coupled to the time step size
Δt . We investigate the quality of the 3D FPM simulations as well as the realization
of the rate-independence of the barodesy model in the numerical implementation. In
case of the oedometric test, we also address the property of 1D compression.

4.1 Oedometric test

During an oedometric test the stress state is far away from the limit state, where
numerical problems can occur. Since the oedometric test models homogeneous 1D
compression, it is expected that a small number of FPM points is sufficient to realisti-
cally model this property. However, a natural lower limit is given by the implemented

2 Averaging is absolutely necessary in case of inhomogeneous deformation occurring in the triaxial test due
to friction at the plates. Homogeneous deformation does not demand for it. However, we use the described
averaging strategy in both cases.
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Table 3 FPM simulation parameters for the oedometric test

Simulation setup h (m) vp (m/s) Δt (s) Δt · vp (m)

Dense and loose sample I 0.02 ∓0.001 0.0009 ∓9.0 · 10−7

0.01 ∓0.001 0.0009 ∓9.0 · 10−7

0.005 ∓0.001 0.0009 ∓9.0 · 10−7

II 0.01 ∓0.01 0.00009 ∓9.0 · 10−7

0.01 ∓0.001 0.0009 ∓9.0 · 10−7

0.01 ∓0.0001 0.009 ∓9.0 · 10−7

least squares approximation scheme for unstructured point clouds. For each FPMpoint
40 neighbors in the interaction radius of h are used for the functional approximation
in the least squares sense.

The standard value for the loading/unloading rate in axial direction is vp =
∓0.001m/s. Throughout this contribution this is the reference velocity. Furthermore,
the initial stress state is given by

T(t = 0) =
⎛
⎝
10.0 0.0 0.0
0.0 10.0 · K0 0.0
0.0 0.0 10.0 · K0

⎞
⎠ ,

where K0 = 1 − sin(ϕ) ≈ 0.4672 with critical friction angle ϕ ≈ 32◦. Table 3
summarizes the FPM simulation parameters for the oedometric test.

4.1.1 Dense sand

For interaction radii h = 0.02m, 0.01m, 0.005m and fixed time step size Δt =
0.0009 s (simulation setup I) the 3D FPM simulations are compared to the element
test in Fig. 5. The corresponding numbers of FPM points are about 775, 6250, and
32,600, respectively. As described in Sect. 1, the unstructured point cloud is checked
regularly for its quality, especially for too large holes or accumulations. If a quality
check fails, points are filled or merged as needed. Thus, the number of FPM points
is not constant throughout a simulation. Choosing h > 0.02m is not possible since
there are not enough points for the least squares approximation. As an example, the
starting point cloud configuration for interaction radius h = 0.01m is illustrated in
Fig. 6.

As expected, a small number of FPM points is sufficient to obtain good agreement
with the element test (even in case of the coarsest point cloud resolution). Conver-
gence with respect to the interaction radius is achieved for the medium point cloud
resolution with h = 0.01m. Convergence means that the result does not considerably
change when further reducing the interaction radius. Consequently, 1D compression
is confirmed. Thus, we now consider the medium interaction radius h = 0.01m and
focus on the rate-independence of the barodesy model as well as the ability of the
implicit FPM solver to reproduce this property in simulation setup II. In Fig. 7, it can
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Fig. 5 Dense oedometric test—comparison of element test and 3D FPM simulations for simulation setup
I: stress-strain-curve (a) and stress path (b)

Fig. 6 Starting FPM point cloud
configuration for the oedometric
test with h = 0.01m (filled
circles: interior points, non-filled
circles: boundary points)
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be observed that a moderate change of the axial loading/unloading rate vp does not
noticeably influence the results. A change of vp includes a proportionate scaling of the
time step size Δt , i.e. the product Δt · vp is constant. Simulations for even larger3 vp
show problems, especially at the transition from loading to unloading and vice versa.
Nevertheless, rate-independence of barodesy can be found in a large range in the FPM
implementation for the oedometric test with dense sand.

3 In the sense of absolute value.
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Fig. 7 Dense oedometric test—comparison of element test and 3D FPM simulations for simulation setup
II: stress-strain-curve (a) and stress path (b)
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Fig. 8 Dense oedometric test—comparison of element test and 3D FPM simulations for different geomet-
rical bases (vp = ∓0.001m/s, Δt = 0.0009 s, and h = 0.01m): stress-strain-curve (a) and stress path
(b)

As described in Sect. 2, the geometrical basis for the above simulations is a cylinder
with height of 0.025m and diameter of 0.0945m. The comparison of this cylindri-
cal setup with a cubic setup (with dimensions 0.0945m × 0.0945m × 0.025m) in
Fig. 8 confirms that the homogeneous character of the deformation provides indepen-
dence of the geometrical basis. Hence, from here on we consider the cube instead
of the cylinder for the simulation of the oedometric test. For the cube the num-
bers of FPM points are about 1125 (h = 0.02m), 7000 (h = 0.01m), and 42,750
(h = 0.005m).
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Fig. 9 Loose oedometric test—comparison of element test and 3D FPM simulations for simulation setup
I: stress-strain-curve (a) and stress path (b)
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Fig. 10 Loose oedometric test—comparison of element test and 3D FPM simulations for simulation setup
II: stress-strain-curve (a) and stress path (b)

4.1.2 Loose sand

The agreement of element test and 3D FPM simulations is similarly well for loose
sand as for dense sand (see Fig. 9). As before, the results depend on the interaction
radius h. Convergence is already achieved for the coarsest point cloud resolution, i.e.
h = 0.02m. Again, rate-independence can be found in a large range in the FPM
implementation of the barodesy model (see Fig. 10).

In summary, FPM is able to reproduce the homogeneous character of the oedomet-
ric test for both the dense as well as the loose setup. Furthermore, rate-independence
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is verified under the constraint that the product Δt · vp of time step size and load-
ing/unloading rate is constant. Finally, it can be observed that the time step size is
independent of the setup (dense or loose).

4.2 Triaxial test

In a triaxial test, the axial stress σ1 on the soil sample is increased until a limit state
is reached. The stress-strain-curve of a dense sample is characterized by a stress
peak which is followed by a softening regime, whereas in case of loose samples an
asymptotical behavior is observed. Regarding the volume, dense samples are subject
to dilatant effects (increasing volume under shear) while loose samples are subject
to contractant effects (decreasing volume under shear). The analysis of the 3D FPM
simulations is focused on the comparison with the corresponding element test as well
as the realization of the rate-independence of the barodesy model.

Compared to the oedometric test, the boundary conditions in a triaxial test are more
complex, especially at the free surface/membrane which is loaded by the confining
pressure −σc. The current numerical implementation of this boundary condition in
FPM is prone to oscillations which can be damped by increasing the point cloud res-
olution (smaller h). Reducing the interaction radius h also results in smaller time step
sizes. The assumption of frictionless upper and bottom plate described in Ostermann
et al. (2013) is lessened to a combination of slip and no-slip velocity condition (con-
strained triaxial test). Thereby, the center of the sample at both plates (up to 50% of
the initial diameter of the sample) is subject to a no-slip velocity condition while the
outer part is subject to a classical slip velocity condition. In lab tests as well as the
3D FPM simulations, this prevents horizontal sliding of the sample during loading. A
more detailed discussion of this effect can be found in Sect. 5.2, where the constraining
strategy in SPARC is described.

For both simulation setup I and II the FPM simulation parameters for the triaxial
test can be found in Table 4. The reference loading rate is vp = −0.001m/s and the
initial stress state is given by

T(t = 0) =
⎛
⎝

−σc 0.0 0.0
0.0 −σc 0.0
0.0 0.0 −σc

⎞
⎠ , −σc = 100 kPa.

As for the oedometric test, three point cloud resolutions are considered for the reference
loading rate until convergence with respect to the interaction radius is achieved. The
respective resolution is then the basis for further simulations with varying loading rate.
The numbers of FPM points are about 900 (h = 0.03m), 5800 (h = 0.015m), and
36,500 (h = 0.0075m).

4.2.1 Dense sand

The results for simulation setup I in Fig. 11 indicate that the quality of the 3D FPM
simulations strongly depends on the chosen interaction radius h. Convergence with
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Table 4 FPM simulation parameters for the triaxial test

Simulation setup h (m) vp (m/s) Δt (s) Δt · vp (m)

Dense sample I 0.03 −0.001 0.015 −1.5 · 10−5

0.015 −0.001 0.01 −1.0 · 10−5

0.0075 −0.001 0.005 −5.0 · 10−6

II 0.0075 −0.01 0.0005 −5.0 · 10−6

0.0075 −0.001 0.005 −5.0 · 10−6

0.0075 −0.0001 0.05 −5.0 · 10−6

Loose sample I 0.03 −0.001 0.01 −1.0 · 10−5

0.015 −0.001 0.01 −1.0 · 10−5

0.0075 −0.001 0.005 −5.0 · 10−6

II 0.0075 −0.01 0.0005 −5.0 · 10−6

0.0075 −0.001 0.005 −5.0 · 10−6

0.0075 −0.0001 0.05 −5.0 · 10−6
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Fig. 11 Dense triaxial test—comparison of element test and 3D FPM simulations for simulation setup I:
stress-strain-curve (a) and volumetric-axial-strain-curve (b)

respect to h and, thus, a good agreement with the element test is achieved only for the
high resolution with h = 0.0075m. This is due to the implemented local linearization
and the adaption of the confining pressure boundary condition at the free surface.
Furthermore, point cloud refinement also necessitates a decrease in the time step size
contrary to the observations for the oedometric test. The smallest interaction radius
is the basis for simulation setup II, see Fig. 12. As for the oedometric test, rate-
independence of barodesy can be found in a large range if the time step size is adapted
properly (Δt · vp constant).
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Fig. 12 Dense triaxial test—comparison of element test and 3D FPM simulations for simulation setup II:
stress-strain-curve (a) and volumetric-axial-strain-curve (b)
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Fig. 13 Loose triaxial test—comparison of element test and 3D FPM simulations for simulation setup I:
stress-strain-curve (a) and volumetric-axial-strain-curve (b)

4.2.2 Loose sand

The results for loose sand are similar to the ones for dense sand even though slightly
larger deviations can be observed, especially for the volumetric strain. Convergence
with respect to the interaction radius is achieved for h = 0.0075m with adapted time
step size (see Fig. 13). Furthermore, rate-independence is confirmed in Fig. 14.

The numerical analysis of the triaxial test shows that FPM is able to capture dilatant
(dense sand) aswell as contractant (loose sand) effects under different loading regimes.
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Fig. 14 Loose triaxial test—comparison of element test and 3D FPM simulations for simulation setup II:
stress-strain-curve (a) and volumetric-axial-strain-curve (b)

However, there is still potential to stabilize the local linearization scheme with respect
to the point cloud resolution. This is essential to reliably simulate real life applications.

5 Case study for SPARC

In this section, we present a case study for SPARC according to the one for FPM
in Sect. 4. Again, the most important parameters in the numerical scheme are ana-
lyzed: these are the number of particles p to represent the soil sample and the
loading/unloading rate vp. In contrast to FPM, SPARC does not add or remove parti-
cles, although this is in principle possible. Therefore, the number of particles remains
constant throughout a simulation.

5.1 Oedometric test

In Table 5, the SPARC simulation parameters for the oedometric test are summarized.
For both the dense and the loose sample we consider the reference loading/unloading
rate vp = ∓0.001m/s and three different numbers of particles (simulation setup I).
Furthermore, simulations for the medium number of particles p = 1125 and three
different loading/unloading rates are analyzed (simulation setup II). Due to the applied
boundary conditions and the homogeneous deformation, convergence of the Newton
iteration scheme to solve the nonlinear system of equations is achieved relatively easy.

5.1.1 Dense sand

The 3D SPARC simulations for simulation setup I show excellent agreement with
the element test, see Fig. 15. Since the deformation is homogeneous, the number
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Table 5 SPARC simulation parameters for the oedometric test

Simulation setup p vp (m/s) Δt (s) Δt · vp (m)

Dense sample I 147 ∓0.001 0.0025 ∓2.5 · 10−6

1125 ∓0.001 0.0025 ∓2.5 · 10−6

3703 ∓0.001 0.0025 ∓2.5 · 10−6

II 1125 ∓0.01 0.0025 ∓2.5 · 10−5

1125 ∓0.001 0.0025 ∓2.5 · 10−6

1125 ∓0.0001 0.0025 ∓2.5 · 10−7

Loose sample I 147 ∓0.001 0.0025 ∓2.5 · 10−6

1125 ∓0.001 0.0025 ∓2.5 · 10−6

3703 ∓0.001 0.0025 ∓2.5 · 10−6

II 1125 ∓0.01 0.001 ∓1.0 · 10−5

1125 ∓0.001 0.001 ∓1.0 · 10−6

1125 ∓0.0001 0.001 ∓1.0 · 10−7
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Fig. 15 Dense oedometric test—comparison of element test and 3D SPARC simulations for simulation
setup I: stress-strain-curve (a) and stress path (b)

of particles has no influence on the accuracy. Therefore, the curves for the different
resolutions almost perfectly fit to the curve of the element test.

The results for simulation setup II are illustrated in Fig. 16. Only in case of load-
ing/unloading rate vp = ∓0.01m/s a slight deviation from the element test can be
observed. This is due to the fact that the time step size Δt is kept constant for all vp.
Adapting the time step size such that the product Δt · vp is constant would lead to an
even better agreement for vp = ∓0.01m/s.
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Fig. 16 Dense oedometric test—comparison of element test and 3D SPARC simulations for simulation
setup II: stress-strain-curve (a) and stress path (b)
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Fig. 17 Loose oedometric test—comparison of element test and 3D SPARC simulations for simulation
setup I: stress-strain-curve (a) and stress path (b)

5.1.2 Loose sand

As before, the 3DSPARC simulations are in very good agreementwith the element test
for loose sand considering varying particle numbers (simulation setup I), cf. Fig. 17.
However, SPARC encounters convergence difficulties for loose sand in case of vp =
∓0.01m/s and Δt = 0.0025 s after the first unloading at axial strain −ε1 = 0.01.
Due to the change from loading to unloading, the initial guess of the solution, which
is inherited from the previous time step, becomes an inadequate choice. In order
to guarantee convergence of the Newton solver, Δt is incrementally reduced until
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Fig. 18 Loose oedometric test—comparison of element test and 3D SPARC simulations for simulation
setup II: stress-strain-curve (a) and stress path (b)

convergence is achieved withΔt = 0.001 s. This value is used for all three simulations
with varying vp, i.e. simulation setup II (see Fig. 18).

5.2 Triaxial test

The triaxial test is characterized by specific boundary conditions: fixed vertical velocity
at the plate and fixed confining pressure at the membrane. This makes convergence of
the Newton iteration scheme difficult or sometimes even impossible. Consequently,
SPARC is very sensitive to the number of particles p, the loading rate vp, and the time
step size Δt .

Another important factor is themodeof constraint of particles in x- and y-directions.
To illustrate the influence of this factor, we consider a dense sample where the par-
ticles located on the symmetry line are set free to move in x- and y-directions (see
Fig. 19). The results of this unconstrained simulation can be found in Fig. 20. How-
ever, the inherent assumption of frictionless plates does not necessarily correspond
to reality. Usually, filter stones with rough surfaces are located at the center of the
sample on both plates to prevent the sample from sliding horizontally during the
experiment (even if the plates are lubricated). The high degree of freedom results in
severe convergence problems in the Newton solver even before the localization of
deformation.4 This ultimately leads to the abortion of the simulation at maximum
axial strain of −ε1 = 0.18. Therefore, for the following SPARC simulations the
motion of particles located on the symmetry line is constrained in x- and y-direction,

4 Localization of deformation means that with increasing loading the deformation of a solid body localizes
in narrow zones which gradually develops to shear bands. This occurs when the stiffness approaches zero.
Vanishing stiffness leads to an ill-posed initial boundary value problem inducing convergence problems in
the Newton solver. For further details see Schneider-Muntau et al. (2017).
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Fig. 19 Starting SPARC
particle configuration for the
triaxial test with p = 259 (filled
circles: interior particles,
non-filled circles: boundary
particles). The black,
unconstrained particles are
located on the symmetry line
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Fig. 20 Comparison of element test and 3D SPARC simulation for the unconstrained triaxial test with
dense sand (p = 259, vp = −0.01m/s, and Δt = 0.01 s): stress-strain-curve (a) and volumetric-axial-
strain-curve (b)

while the other particles are set free to move in all directions. Due to the differing dis-
cretization strategies in SPARC and FPM, the constraining strategies are also different
(cf. Sect. 4.2).

The SPARC simulation parameters for the triaxial test are summarized in Table 6,
where (−ε1)max denotes the maximum axial strain reached during the respective sim-
ulation. Again, for both the dense and the loose sample simulations with reference
loading rate vp = −0.001m/s and three different numbers of particles are considered
(simulation setup I). Moreover, rate-independence is investigated in simulation setup
II.
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Table 6 SPARC simulation parameters for the triaxial test

Simulation setup p vp (m/s) Δt (s) Δt · vp (m) (−ε1)max

Dense sample I 222 −0.001 0.4 −4.0 · 10−4 0.2

441 −0.001 0.4 −4.0 · 10−4 0.16

567 −0.001 0.4 −4.0 · 10−4 0.11

II 441 −0.01 0.06 −6.0 · 10−4 0.08

441 −0.001 0.06 −6.0 · 10−5 0.05

441 −0.0001 0.06 −6.0 · 10−6 0.02

Loose sample I 222 −0.001 0.4 −4.0 · 10−4 0.2

441 −0.001 0.4 −4.0 · 10−4 0.12

567 −0.001 0.4 −4.0 · 10−4 0.05

II 441 −0.01 0.05 −5.0 · 10−4 0.10

441 −0.001 0.05 −5.0 · 10−5 0.10

441 −0.0001 0.05 −5.0 · 10−6 0.01
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Fig. 21 Dense triaxial test—comparison of element test and 3D SPARC simulations for simulation setup
I: stress-strain-curve (a) and volumetric-axial-strain-curve (b)

5.2.1 Dense sand

The illustration of the results for simulation setup I in Fig. 21 reveals that the larger the
number of particles is, the earlier SPARC encounters convergence problems. Obvi-
ously, nonlinear problems with higher degrees of freedom involving the described,
specific boundary conditions are more difficult to be solved by the Newton solver
than problems with lower degrees of freedom. In general, good agreement with the
element test is achieved before the stress peak. Minor deviations can be observed after
the peak.
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Fig. 22 Dense triaxial test—comparison of element test and 3D SPARC simulations for simulation setup
II: stress-strain-curve (a) and volumetric-strain-curve (b)

Severe convergence problems are already encountered in the first time step in case
of vp = −0.01m/s and Δt = 0.4 s. Therefore, Δt is incrementally reduced to Δt =
0.06 s until convergence is achieved. In Fig. 22, the results for simulation setup II
are presented. It is obvious that the smaller3 the loading rate is, the earlier SPARC
diverges: For vp = −0.001m/s SPARC diverges right after the stress peak, whereas
for vp = −0.0001m/s even the peak of the stress-strain-curve is not reached. In case of
small loading rates the numerical errors accumulate to such an extent that convergence
of the Newton solver is difficult or even impossible.

5.2.2 Loose sand

The results for loose sand with simulation setup I are illustrated in Fig. 23. As for
the dense sample, the larger the number of particles is, the earlier SPARC encoun-
ters convergence problems. Again, this happens due to higher degrees of freedom.
Nevertheless, the 3D SPARC simulations agree well with the element test before and
slightly after the plateau of the stress-strain-curve.

As before, for the highest3 loading rate vp = −0.01m/s convergence problems
can be observed for large time step sizes. Therefore, Δt is incrementally reduced
to Δt = 0.05 s until convergence is achieved for simulation setup II. Figure 24
shows that the smaller3 the loading rate is, the earlier SPARC diverges. For vp =
−0.01m/s,−0.001m/s SPARC diverges at almost−ε1 = 0.1. For vp = −0.0001m/s
even the plateau of the stress-strain-curve is not reached. This is again due to the
accumulation of numerical errors for small loading rates vp.

6 Comparison of FPM and SPARC

The discretization strategies in FPM and SPARC are pretty different: On the one hand,
FPM is based on an unstructured point cloud which is continuously checked for its
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Fig. 23 Loose triaxial test—comparison of element test and 3D SPARC simulations for simulation setup
I: stress-strain-curve (a) and volumetric-axial-strain-curve (b)
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Fig. 24 Loose triaxial test—comparison of element test and 3D SPARC simulations for simulation setup
II: stress-strain-curve (a) and volumetric-axial-strain-curve (b)

quality. Holes are filled and accumulations of points are dissolved by clustering. On
the other hand, the initial distribution of particles in SPARC is regular. Furthermore,
there is no adding and removing of particles throughout a simulation. Due to the
unstructured character of the FPM point cloud, more neighbors are necessary for
functional approximation in a weighted moving least squares scheme as described in
Ostermann et al. (2013). This accounts for the larger number of points which have
to be used in FPM to reproduce the element tests and the rate-independence of the
nonlinear barodesy model for the oedometric as well as the triaxial test. The larger
number of points is attended by smaller time step sizes.
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As long as the product Δt · vp of time step size and loading/unloading rate is small
enough, the 3D SPARC simulations match very well with the element tests and show
no oscillations regardless of the number of particles. However, the convergence of
the Newton iteration scheme, which is used to directly solve the nonlinear barodesy
model, is pretty sensitive to the initial guess. This can be clearly observed for the
triaxial test which is characterized by a high degree of freedom, especially in case of
large numbers of particles p and small loading rate vp.

For FPM the triaxial test is also more challenging than the oedometric test. Due
to the local linearization approach, which is used to integrate the nonlinear barodesy
model into the standard coupled velocity-pressure formulation, oscillations occur for
coarse point cloud resolutions. But they can be damped to a certain extent by increasing
the resolution, i.e. decreasing the interaction radius h. Unlike the behavior in SPARC,
the adequate choice of the time step sizeΔt allows for high quality simulationswithout
abortion.

We intentionally omit the explicit comparison of FPM and SPARC regarding run-
time due to the following reasons: (1) Different hardware was used for the simulations.
(2) FPM and SPARC are implemented in different programming languages, namely
Fortran 90/95 and MATLAB, respectively. (3) FPM has been under development for
a much longer time than SPARC. As a result, the implementation is more efficient.
Depending on the type of simulation (oedometric or triaxial test) the runtime is of the
order of several minutes to a few hours for both methods.

7 Conclusion

The theoretical description of the meshfree generalized finite difference methods FPM
and SPARC in Ostermann et al. (2013) is completed in this contribution.We presented
numerical case studies for the oedometric and the triaxial testwith respect to the critical
parameters, namely the interaction radius h (FPM)/number of particles p (SPARC),
the loading/unloading rate vp, and the time step size Δt .

The differences of the FPM and SPARC simulation results regarding spatial res-
olution, quality, and stability reflect the different numerical approaches as well as
discretization strategies. The implicit approach implemented in FPM, which includes
a local linearization of the barodesy model to comply with its standard formulation,
proves to be more stable than the implicit and fully nonlinear ansatz used in SPARC.
However, this comes with a price tag in terms of higher point cloud resolution and
smaller time step sizes to guarantee accuracy and rate-independence of the numerical
scheme.

In combination with the implementation of the confining pressure condition at
the free surface of the soil sample, the local linearization leads to oscillations in the
3D FPM simulations for the triaxial test. Damping of the oscillations is possible by
decreasing the interaction radius. The high quality of the results for both the oedometric
as well as the triaxial test is based on the least squares approximation using up to
second order polynomials on an unstructured point cloud. Currently, we investigate
the sensitivity of FPM relating to the time step size in more detail.
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As long as deformations are homogeneous, the 3D SPARC simulations are in
excellent agreement with the element test. Although the Newton solver suffers
from convergence problems, especially in the softening regime, SPARC is capa-
ble of modeling triaxial tests beyond the stress peak. In contrast to FPM, it uses
a least squares approximation based on first order polynomials and a regular ini-
tial particle distribution. Chen (2014) has shown that the Newton iteration method
and the Levenberg–Marquardt method encounter convergence problems close to
the stress peak; even the arc-length methods cannot find a solution when deforma-
tion becomes large. This behavior is related to the fact that the physical problem
becomes ill-posed. Adequate regularization techniques are currently analyzed. Since
theBroyden–Fletcher–Goldfarb–Shanno (BFGS) algorithmhas proven toworkwell in
finite element methods for such problems (see Bathe 2014 and the references therein),
this could be an alternative to the classical Newton solver.

In conclusion, both meshfree methods can successfully model large deformations
for quasi-static problems. Future research is focused on expanding the range of appli-
cation to dynamic processes aswell as processeswhich are characterized by temporally
or spatially separated quasi-static and dynamic behavior. First attempts for FPM have
been made in Michel et al. (2017).
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