IPC2020-9471
EARTHQUAKE IN PAPUA NEW GUINEA
RESULTS IN NEW CONCEPT FOR
SECURING PIPELINES IN RIDGELINERIGHT-OF-WAY: THE MICROPILE
CONTIGUOUS WALL

Contents

- Introduction
- Damage assessment
- Design considerations
- Geotechnical design
- Micropile system
- Pile drilling
- Equipment trial
- Construction

Introduction

• The EMPNG LNG system consists of wellpads, gathering lines, a gas conditioning plant, onshore and offshore export pipelines, a gas liquefaction plant and a marine terminal in PNG.

Introduction

- M 7.5 earthquake on Feb. 25 (UTC)
- Epicenter directly beneath the HGCP

Damage assessment

- Hundreds of landslides
- Soil liquefaction
- Soil cracking
- Significant loss of RoW width

• No loss of containment!

Damage assessment

Orthoimagery 2016

Damage assessment

Post-earthquake
 landslide mapping

Design considerations

- Remoteness of RoW repair sections
- Numerous sites in need of repair
- Weak soil conditions and instable terrain
- Need for light-weight equipment (capable of being transported by helicopter)
- Necessity of easy installation
- Meeting the original design basis requirements
- Certain degree of vandalism resistance

Design considerations

- ILF has worked on earthquake assessment and repair concepts on this project since 2017.
- Early design concepts have been developed for slope stabilization.
- Adaptation to new requirements:
 - RoW and pipeline protection instead of slope stabilisation!

Geotechnical design

- Design life of 30 yrs achieved
- Design based on:
 - location on steepest slope
 - most narrow parts of the ridge
 - location of maximum landslide thickness
 - back-calculated slope stability
 - sensitivity checks

Geotechnical design

Micropile wall layout

Geotechnical design

- Optimal distance between and length of the micropiles defined by FE soil arching analysis
- Defines the embedment depth and spacing of the micropiles
- Shows elastic deformation behaviour of the pipeline

Micropile system

- Hollow steel pile (140mm diameter, 8mm wall thickness)
- Squeezed connection between pile segments

Pile drilling

- Drilled to depths of 15 m in any soil / rock type
- Micropiles filled with grout

Equipment trial

The equipment setup was tested and optimized.

Equipment trial

The equipment setup was tested and optimized.

Construction

Micropile installation in PNG

Construction

Micropile installation in PNG

Construction

Micropile installation in PNG

Thank you for your attention! Stay healthy!

For more information please contact Christoph.Ladenhauf@ilf.com

