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Abstract The aim of this paper is to numerically investigate the development, thick-
ness and orientation of shear bands, in biaxial test with two approaches towards solving
problems of continuum mechanics, namely the meshless “Soft PARticle” method and
the mesh based Finite Element method. Soft PArticle Code (SPARC) is a straightfor-
ward collocation numerical method based on strong formulation, in which a first order
polynomial basis is adopted for the evaluation of spatial derivatives in partial differ-
ential equations. A novel nonlinear constitutive model— barodesy for clay, is adopted
in this study. The biaxial test, which involves homogeneous, and later inhomogeneous
localized deformation is simulated using the Soft PArticle Code and the Finite Element
method. The inclination and thickness of the shear bands are evaluated and analysed
with the earlier experimental, theoretical and numerical investigations. Furthermore,
simulation results are compared and presented to demonstrate the advantages and
limitations of SPARC in comparison to FE method.
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1 Introduction

Meshless methods have drawn attention in the past decades due to their simplicity in
numerical formulation and ability of modeling large deformations. Compared to mesh
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based methods such as FE methods, a true meshless method maintains neither the
connectivity between the nodes nor uses any background mesh, therefore, no mesh
is required. In addition, the calculation of spatial derivatives in partial differential
equations is achieved by means of the information (the parameter of interest e.g. stress
or velocity and the position vector) carried on by each particle. The point collocation
method (Aluru 2000) and finite point methods (Onate et al. 2001), for instance, belong
to this category. These methods use a finite support domain (small in comparison to
the whole study domain) to approximate the spatial derivatives, and hence belong to
collocation methods, which result in significant reduction of computational efforts
(Zhang et al. 2000). Thereafter, the governing equations are solved, meaning that such
a formulation is “strong”.

It has been shown that although SPARC adopts basic polynomial linear approxi-
mation method, it is capable of modeling strain localization (Chen 2005). In addition,
the formulation for stress boundary condition is straightforward.

Finite element (FE) methods have been developed since the 1950’s. They are often
regarded as benchmarks for new methods (Liu et al. 2006b, a) due to their robustness
and accuracy. FE uses the weak formulation to solve the underlying differential equa-
tions. In this paper, the simulation results of a biaxial test using SPARC are compared
with those obtained with an FE method. Two sets of biaxial test on overconsolidated
specimen, once with a weak zone and once homogeneous are modeled. The weak zone
guarantees the occurrence of inhomogeneous deformation and localization of defor-
mation after the homogeneous deformation and manifests strain localization. Strain
localization in real samples has e.g. been captured by means of x-ray on test samples
(Kolymbas 1972). Modeling of strain localization is a challenging task, it can thus be
used to test the capability of numerical simulations and serves as a good numerical
example for comparison herein.

In our simulations, barodesy for clay (Medicus and Fellin 2015) is used as consti-
tutive model. Barodetic constitutive models (Kolymbas 2012a,b; Medicus and Fellin
2015) take into account the influence of stress state T and void ratio e of the material.
Their incremental stiffness (Kolymbas 1999) imposes convergence difficulties (Fellin
and Ostermann 2002) especially at the occurrence of strain localization. This paper
is organized as follows: in Sect. 2, the framework of SPARC is briefly explained,
Sect. 3 provides some information regarding the adopted constitutive model barodesy
for clay, in Sect. 4 the conventional soil parameters as defined by MOHR—COULOMB
are obtained, Sect. 5 presents the simulation setups and results using SPARC and
FE method and in Sect. 6 the acquired shear bands are investigated and compared.
Conclusions are given in Sect. 7.

2 SPARC framework

Soft PArticle Code is a straightforward framework for numerical simulation based
on collocation strong formulation (Chen 2005; Ostermann et al. 2013). Continuum
is presented using particles that carry physical information such as position vector
x, velocity vector v, Cauchy stress tensor T, void ratio e and etc. The equilibrium
equation for each particle reads:
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div'tA'T + pg = 0 (1)

Since in this study the body force induced by gravitational acceleration g is negligible,
g is set to zero in our simulations.

The velocities of particles are the unknowns in SPARC. An initial guess of the
velocity field vi— is considered as the start point of the solution finding process (see
Fig. 1). The velocity gradient L. = grad’vy— is then evaluated by means of “first
order polynomial” interpolation. We then obtain the stretching tensor D and the spin
tensor W, which are the symmetric and anti-symmetric part of L. as shown in Fig. 1.
The objective rate of the stress tensor T at time-step ¢ is evaluated by the constitutive
model “barodesy for clay”,

T = B(T', D, ¢') (2)

which is a function of the current stress state T?, ¢’ and D of the particle under
evaluation. Due to highly nonlinear nature of barodesy for clay, the fourth-order
RUNGE-KUTTA integration is applied to obtain a more accurate objective stress rate
T’ [see Chen (2005)]. Since the void ratio e is also one of the variables affecting
the stress rate, the void ratio is also updated in every sub-step of the RUNGE-KUTTA
fourth-order by calculating the rate of void ratio

é=(+e)trD, A3)

where tr D is the sum of the diagonal components of the stretching tensor. Application
of JAUMANN-ZAREMBA objective stress rate yields the stress rate T,

T =T +WI' - T'W ©)
and finally the stress state and void ratio are updated as follows:

T4 = T! + TAt (5)
A = ol 4 6 AL (6)

The above mentioned algorithm is applied to all particles and the updated stress tensor
T'+4" and void ratio e/ T4’ for all particles are obtained. The equilibrium equation
Eq. (1) can be built once the T/*4! has been calculated. The non-linear system of
equations consisting of Eq. (1) is solved by NEWTON method in order to determine

the unknown velocities V,’(i?[, where k is the iteration of the NEWTON solver until the

1+ At

solution which satisfies the Eq. (1) is obtained. Once the solution v is available,

the position of the particles are updated,
XA = x! AL Ay (N

and the solution of the velocity field from the previous time step is used as the first
guess for the next velocity field time step.
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Since SPARC is a collocation method, the Jacobian is sparse. In case of the presence
of stress boundary conditions, such as the hydrostatic pressure applied on the biaxial
test specimen, the kinematic boundary condition

TI+Alnt+Al _ nl+AIp =0 (8)

is applied, where n and p are the surface normal vector and pressure, respectively.
Replacing Eq. (1) as the governing equation for boundary particles subject to surface
pressure p.

It can be seen that the spatial derivatives of the velocity field and stress field (i.e.
gradv and divT) and the unit vector normal to the free surface must be evaluated
to obtain the partial differential equations (PDE) in Eq. (1) or in Eq. (8). To achieve
this, the linear polynomial approximation method is adopted. The following first order
polynomial for m-dimensional problems is used:

f=)"ajx, ©)
J

where f is an approximation to the parameter of interest f. Its coefficients a; are
computed in a least-squares sense, benefiting from the information f carried by the
adjacent particles, the so-called neighbors. Here comes a 2-dimensional example for
the evaluation of the coefficients a; for a particle with index i:

fo Ja)
fo fi
Fo=| . |—-| . (10)
S fi
—_———
40)
X1 X2(1) X1 *20)
_ X12)  X22) X1 X20)
X = : - . ) (11)
X1(nn)  X2(nn) X1 X20)
—_———

X

where n, denotes the total number of neighbors of particles i; the subscript denotes
the corresponding physical property belonging to particle i; subscripts 1, 2, dots and
n, denote the index of neighbors of particles i; F(;y and X'(;) are matrices consisting
of the parameter of interest f and the position vectors x stored at neighbors of particle
i, respectively. The coefficients can thus be obtained with

-1

@ Springer



Int J Geomath (2017) 8:135-151 139

NEWTON Solver

E \ BARODESY :
' Tt = h(T?, ef, DY) :
E JAUMANN-ZAREMBA ~> |1
T r+at Tt = Tt 4 WIT! — T'W? |

v
ke Time Integration

THAL it ot Ay
eIHAL — ot Lo AL

Equlibrium Equation
V-T”*A"+pg:0

Fig. 1 Framework of SPARC

Herein, neighbors of the under-evaluation particle, are particles, which lie within a
cut-off radius r of that particle. Note that the particle under evaluation is also counted
as its own neighbor. The order of the neighbors in Eq. (11) is irrelevant, but the order
of Eq. (10) must correspond to Eq. (11). Once the coefficients of f are obtained,

the partial derivatives of f are also obtained: % = g;. If X is not a square matrix,

pseudo-inverse is utilized to compute X’

In SPARC, the logarithmic definition of strain is implemented so as to account for large
deformations. It is believed that although the homogenized deformation of the whole
specimen can be considered small enough to fit to the description of infinitesimal
strain theory, the shear deformation in the shear bands is large enough to invalidate
the theory of infinitesimal strain. The complete algorithm of how SPARC works is
summarized in Fig. 1.

3 Constitutive model

Barodesy is a constitutive model which can be seen as a further development of
Hypoplasticity, which does not include notions of elastoplasticity such as yield and
plastic potential functions. Barodesy, pioneered by Kolymbas (2012c) was first devel-
oped for sand and then developed for clay (Medicus and Fellin 2015). It is formulated
in stress-rates ('i‘) as a function of the stretching tensor (D), the actual stress state T
and the void ratio e:

T=7(D,T,e). (13)

It is based upon the two rules by Goldscheider (1976), the so-called proportional
paths and the asymptotic soil behavior. Deformations with proportional strain paths
result in stress paths which approach a proportional stress path. Proportional strain
paths are, for example, oedometric or triaxial compression. Furthermore, common
concepts of soil mechanics, as e.g. barotropy, pyknotropy or critical state concept
are considered (Kolymbas and Medicus 2016; Medicus et al. 2016). The complete
equation of “barodesy for clay” reads,
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T =TI - (fR? + ¢T°) - D| (14)

where R is the function, which links proportional strain paths to proportional stress

paths and includes the stress-dilatancy relation. It must be noted that the constants c;

are dimensionless. The (R? and T®) are the normalized tensors'.

0 . In K
R=—exp (aD ) with ¢ = ———— (15)
V3/2 — D% /2
1 , —3tr DY
K=1 with m = ——— (16)

B 1+ ci(m — cp)? V6 — 2trD0?

where tr D is the sum of diagonal components of the normalized stretching tensor
and is a measure of dilatancy.

Functions f and g are scalar functions that incorporate asymptotic states, critical
states, the influence of stress level (barotropy) and density (pyknotropy),

f:c6-ﬂ~trD0—% (17)
1 s
82(1—06)’,3'U'DO+<1::> —3 (18)

with the critical void ratio e,
2
e = exp (N—,\*ln—f> _1, (19)
o

where o * is the reference pressure (equal to 1 kPa) and

P 20)
A 3 V3
W ¥ a* *

_ A TR poy A Q1)

2.3 2

The constants ¢; are determined by means of soil parameters as follows,

@ critical friction angle

N': ordinate intercept of the isotropic normal compression line (NCL) in the In p —
In(1 + e) plot

A*: is the slope of the NCL

«*: is the slope of unloading line under isotropic compression in In p — In(1 + ¢) plot

The calibration of constants for Dresden clay are found in Table 1.

All parameters can be obtained from a consolidated undrained triaxial compression
test. Readers are referred to Medicus and Fellin (2015) for more profound details on
calibration and structure of “barodesy for clay”.

! The superscript 0 marks a normalized tensor, i.e., X0 = X/IX] - 1.
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Table 1 Determination of the

Constants Relati Values for Dresden cle
constants for Dresden clay with onstants cation aues for Lresden ciay
@ = 35°, N =0.622, 1—sin g
A* = 0.038 and «* = 0.008 “ 2 singe 0.028

e —3/243 ~3.6213

c3 % —2 356408

2657 4 (585

c4 1 1

14-sin @¢

cs5 T—sin WZ' 3.69

1
c6 — 0.704
2(037“‘5A 71)

3.1 Critical state in barodesy

The R function of barodesy has the major contribution in defining the critical state
behavior, all stress directions R for isochoric (trD = 0) form a fan in the principal
stress state (see Fig. 2). This locus coincides practically with the failure criterion of
MATSUOKA-NAKALI for granular materials, which is defined as:

L1
— = Kun (22)
I3

where I1 = trT, I, = (112 — trTz) /2 and I3 = det T are the first, second and third
invariants of the stress tensor, respectively. The material parameter K, is a function
of the critical state friction angle ¢,:

Kyy = ———*<. (23)

Fellin and Ostermann have proven in Fellin and Ostermann (2013) that the deviation of
the locus defined by barodesy from the one defined by the Matsuoka-Nakai criterion is
less than 0.12% for a critical state friction angle of less than 40°. The barodetic model
has been implemented in ABAQUS as a user subroutine UMAT based on the hypoplastic
formulation presented in Fellin and Ostermann (2002). The void ratio is an additional
state and output variable in the UMAT.

4 Mohr-Coulomb vs. barodesy

The analytical solutions addressing the orientation of shear bands for granular mate-
rials, are based on two conventional soil parameters, friction angle ¢ and dilatancy
angle Y (see Sect. 6 for detailed discussion). Element simulation of triaxial test with
barodesy for clay for three consolidation pressures (p;,; = 100,200 and 300 kPa) were
conducted and the results are presented in Fig. 3. Where o7 and o7 are the principal
stress components. The acquired values achieved from the element tests were applied
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Fig. 2 Coincidence of the locus 01
of critical states of barodesy
with MATSUOKA-NAKAI failure
criterion. MOHR-COULOMB’s
failure surface is added for
comparison [from Medicus
(2016, p. 57)]

Mohr-Coulomb

03 02

Barodesy
——oe—— Matsuoka-Nakai

0 e

N

|

c +  ply; =100 kPa
O ply; = 200 kPa

Evol <%)

100 _
n 10 O Ply; = 300 kPa
0
0 10 20 30 0 10 20 30
—e1 (%) —e1 (%)
(a) (b)

Fig. 3 Element test with barodesy for clay, a stress—strain curve, b volumetric behavior

Fig. 4 MOHR-COULOMB
criterion for determination of
friction angle ¢ and cohesion ¢

for determination of friction angle ¢ and cohesion ¢ according to MOHR—COULOMB
criterion (see Fig. 4), which yields a friction angle of ¢ = 32.9° and cohesion of
¢ = 24.7 kPa. In order to reproduce almost the same volumetric plastic strains with
MOHR-COULOMB, a dilatancy angle of ¢ = 7.3° was assumed.

Stress—strain curves and volumetric behavior with linear-elastic, perfect-plastic
MOHR-COULOMB are plotted Fig. 5.
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Fig. 5 Simulation with MOHR—COULOMSB for ¢ = 32.9°, ¢ = 24.7 kPa, E = 10,000 kPa and v = 0.3.
a Stress—strain, b volumetric behavior for v = 7.3°
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Fig. 6 Illustration of a boundary conditions and b particles representing the study domain

5 Numerical example
5.1 Simulation setup

A biaxial test can be regarded as a plane strain adaption of a triaxial test, to show shear
localization in a 2D numerical setup. The deformation is driven by two lubricated
loading caps on the top and the bottom of the specimen to allow lateral deformation.
The upper cap moves downward compressing the specimen. The specimen is loaded
with constant hydrostatic pressure p being applied to the specimen. The resulting
boundary conditions are illustrated in Fig. 6a. In our simulations, the initial void ratio
e = 0.45 under a cell pressure p = 100 kPa, corresponding to an over-consolidated
clay, is adopted. Therefore, a peak in the stress—strain relationship with post peak
strain softening, strain localization or formation of shear band(s) in the biaxial test
simulation are to be expected.
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Table 2 Summary of Method Setup No. of particles/ nodes
simulations
SPARC Homogeneous 180 231 299
Imperfection - 231 -
FE Homogeneous - 231 -
Imperfection - 231 -

The particle configuration for the study domain in SPARC is shown in Fig. 6b. The
surface particles are subjected to cell pressure p. Velocity components v of particles
on loading caps are prescribed, whereas v is unknown. Note that in order to prevent the
specimen from horizontal translation, the velocity component v; = 0 for the particle
in the middle-top of the sample is prescribed. The radius » = « - is used to determine
neighbors for all particles in simulations where « has a value of 1.5-1.7 depending on
the simulations®. The unit vector n normal to the pressure surface must be determined
for the computation of Eq. (8). n is also computed using first-order polynomials in a
compacted support presented in the previous section. Note that therefore, neighbors
of a surface particle consist only of surface particles.

For the FE simulation, the particles shown in Fig. 6 are used for the nodes of the
mesh. The boundary conditions are the same in both simulations. For the discretiza-
tion, 4-node bilinear plane strain elements with four Gaussian integration points were
applied.

Two simulation examples, with and without imperfection in the specimen, are pre-
sented in the following. The imperfection is implemented by increasing the void ratio
of the particles representing a weak zone (Fig. 6b) by 0.02, resulting in relatively looser
state and thus lower stiffness. In FE simulations, the weak zone consists of only one
element formed by the same nodes. Given a weak zone, the formation of shear bands is
expected to initiate from the weak zone (Fellin et al. 2009). In order to investigate the
dependency of the shear bands, simulated by SPARC, on the number of particles, three
sets of simulations with initially homogeneous setup for number of particles 180, 231
and 299 were conducted. Simulation with an implemented imperfection were done
only for 231 particles. All simulations are summarized in Table 2.

5.2 Simulations with initially homogeneous fields

Since the initial stress field and void ratio field are homogeneous, the deformation in
the sample shall be homogeneous, meaning that the stress strain curve of all particles
must be identical and must overlap with the curve obtained from element test result.
The constitutive model barodesy for clay is directly used to obtain the stress strain
curve by prescribing the deformation matrix

2 h =max[hy, hy] is the maximum spacing between particles.
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Fig. 7 Stress—strain curves (o927 — &27) of all particles in SPARC. The blue dashed line is the result of an
element test (color figure online)

-1 0 0
D=0 Dy 0 (24)
0 0 0

and using an initial void ratio e = 0.45 and stress state T = 1 (—100 kPa). D»; is
determined in each time step by satisfying the condition T2 = 0 with 7>, obtained
from the constitutive model. The fourth-order RUNGE-KUTTA method is adopted as
time integration scheme for the element test. The curve of the element test in Fig. 7
(with &, = 20%) consist of 2002 data points.

The stress—strain curves of all particles obtained from FE and SPARC simulations
are shown in Figs. 7 and 8, respectively. The SPARC simulation results show that all
curves overlap with one another and with the element test curve until €20 & 4.6% is
reached. This implies that the deformation of the sample for €75 < 4.6% is homoge-
neous. Thereafter, the deformation starts to localize at particles, the localization causes
numerical error and the continuation of simulation leads to the accumulation of the
error. At the beginning of the simulation, |D| has almost the same value all over the
specimen. However, the discrepancies in the |D| field can be recognized, even if the
deformation field is relatively homogeneous. When the axial strain (g,) approaches
4.6%, strains start to localize. In the end, shear bands, revealing a ‘v’ shape, occur on
the bottom of the specimen (Fig. 12c¢).

The void ratio field after localisation is shown in Fig. 11c, results show that contrac-
tion occurs in the whole sample at the beginning. When strain starts to significantly
localize, the void ratio in the shear bands exhibit volumetric increases (see Fig. 11c).
This trend is expected to occur in a dense granular sample with strain softening behav-
ior.

In Fig. 12a, b, the deviatoric shear strain,
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Fig. 8 Stress—strain curves (o, — &4) of all elements in FE. The blue dashed line is the result of element
test (color figure online)

2
Vs = §€ 1€ (25)

is plotted as a measure of localization of deformation.

The FE simulation, on the contrary, shows a homogeneous behavior over the whole
deformation, see Figs. 11a and 12a. The evolution of the void ration e shows also a
homogeneous compression while loading and no localization can be modeled, even at
axial strain &, = 20%.

5.3 Simulations with imperfection implemented

The stress strain curves in terms of 027 and &, obtained by SPARC are plotted in Fig. 9.
For ¢, < 2.0% all curves except for those of particles in the weak zone are in good
agreement with those of the element test curve. At g, ~ 2.3%, strains start to localize
significantly in a shear band initialized by the weak zone. Thereafter, strains occur
mainly in the shear band. The initial shear band is followed by some other shear bands
(see Figs. 11d, 12d) before the program aborts. At this point the solver cannot find any
solution even with an extremely small time-steps Ar < 10710,

The void ratio field is shown in Fig. 11. Again, contraction occurs in the whole
sample at the beginning. However, once the strains start to localize significantly, the
changes in the void ratio can be used to demonstrate dilatancy.

The FE simulation shows comparable results. Deformations are homogeneous until
the peak. Strain localization occurs at about &, ~ 3%, which is larger than ¢, &~ 2.3%
by SPARC and closer to the peak of the element test result (Fig. 10).

The FE could reach a value of ¢, = 20% which is the standard value of the axial
strain in triaxial tests. Shear bands start to occur in FE right before the peak of the
stress—strain curve and almost in “X” pattern, however, this pattern does not last long
and after reaching an &, of greater than almost 4% the shear strain localizes in a
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Fig. 9 Stress—strain curves (0, — &4) of all particles in simulations with imperfection implemented in
SPARC. The blue dashed line is the result of an element test (color figure online)
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Fig. 10 Stress—strain curves (o0, — &4) of all elements in simulations with an implemented imperfection
in FE. The blue dashed line shows the result of an element test (color figure online)

single diagonal band, see Figs. 11b and 12b. Although, FE was capable of reaching
ga = 20%, results of axial strain at about ¢, = 4% are included, so as to provide a
more objective comparison.

6 Orientation and thickness of the shear bands

Vermeer (1990) conducted theoretical and experimental investigations on the orienta-
tion 6 and thickness of shear bands in biaxial tests, his investigations show that for fine
sands, the orientation of shear bands coincides almost the MOHR—COULOMB solution
Oc = 45° 4 ¢/2 and for coarse sands, the ROSCOE solution of Og = 45 + /2 is
observed. Where ¢ and y are the friction and the dilatancy angles, respectively. Inves-
tigations of Han and Drescher (1993) explain the dependency of the shear bands on the
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e, eq = 6.20% e, eq = 6.20% e, cqa = 5.68%

(a) (¢)
e, eq = 3.96% e,eq = 3.96%

(b)

Fig. 11 Demonstration of shear band in form of void ratio field for a FE with homogeneous setup, b FE
with weak zone, ¢ SPARC with homogeneous setup, 231 particles, d SPARC with weak zone, 231 particles,
e SPARC homogeneous, 299 particles, f SPARC homogeneous, 180 particles

magnitude of the confining pressure. As mentioned in Han and Drescher (1993), the
shear band inclination angle with respect to the minor principal stress decreases when
the confining pressure increases, however, the shear strains increase. Experimental
results of Han and Drescher (1993), have shown that at higher confining pressures
(almost 400 kPa), the orientation of shear bands correspond better to the solution of
ROSCOE and the shear band inclination is in general much lower than the one predicted
by MOHR—COULOMB. In our simulations, the acquired inclination angle with SPARC
are about 39.8° for the test with initially homogeneous sample and about 45.8° for
the test with implemented imperfection. As mentioned before, no shear band has been
observed in simulation with FE for initially homogeneous sample, while for the sample
with initial imperfection, the acquired inclination is about 46.8°.

As discussed in Sect. 4, a friction angle of ¢ = 32.9° and dilatancy angle of
Y = 7.3° can be attributed to Dresden clay. Considering the solution of MOHR—
COULOMB with 8¢ = 45° 4 ¢/2, we should be expecting an inclination of ¢ = 61.4°
which is a clear overestimation for both the results of FE and SPARC.

However, the solution of ROSCOE with O = 45+ 1//2 would predict a 9g = 48.6°
which seems to be a more realistic estimation both for FE and SPARC.

As for the thickness and inclination of the shear bands acquired by FE methods
using a Hypoplastic constitutive model, Tejchman and Wu have shown in Tejchman
and Wu (1996) that the inclination and thickness of the shear band are dependent
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Ys,€a = 6.20% |D|,eq = 6.20% ID|,ea = 5.68%

(e)
ID|,eq = 5.68%

(a)

Vsy€a = 3.96%

Fig. 12 Demonstration of shear band in form of shear strain y; field for a FE with homogeneous setup,
b FE with weak zone and |D| for ¢ SPARC with homogeneous setup, 231 particles d SPARC with weak
zone, 231 particles e SPARC homogeneous, 299 particles, f SPARC homogeneous, 180 particles

on the spatial discretization. In a further investigation, Tejchman and Bauer (1996)
benefit from the results of an extension of the Hypoplastic model for polar continuum
with a characteristic length, the so-called mean grain diameter dsq. Their results show,
the thickness of the shear band is the same for a fine and coarse mesh. In order to
realistically simulate the thickness of the shear zone within a polar continuum, the
size of the finite element should be smaller than 5 - dsg. As it can be seen in Figs. 11b
and 12b, the shear band acquired for FE calculations show an inclination of almost
52° and a width of 0.028 m which is almost equal to the width of 4 elements.

In Figs. l1c, e, fand 12c, e, f, results of SPARC for a homogeneous setup and for
different number of particles are presented. As can bee seen, for the lower number of
180 particles, shear bands are not clearly formed and deformation seems to localize on
the two corners of up-left and down-right. This phenomenon can be so explained, thatin
case of homogeneous setup, the shear bands appear as a result of the accumulated error
in each time-step, and with less number of particles, the accumulation stays smaller
which can lead to later occurrence of shear bands or no meaningful occurrence of
shear bands.

For more number of 231 particles, the shear band has a “v” shape at the middle
bottom of the specimen and has a thickness, containing almost 6 particles (see Fig. 12¢),
while for more number of 299 particles (see Figs. 11e, 12e), the shear band is not as
thick as by 231 particles and contains almost 4 particles. Furthermore, for 299 particles,
shear bands have a symmetric shape not only along x| axis, but also along x; axis.
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As for the inclination, the acquired shear bands for more particles (299) have a slightly
larger angle as those acquired for 231 particles which fits better to the solution of
ROSCOE.

From the acquired symmetric shape, and the larger inclination angle, it can be
deduced that for SPARC, the same as for FE methods, the denser the particles, the
better the shear bands can be simulated.

7 Concluding remarks

In this paper, we have shown that linear approximation method used in SPARC can
model the formation of shear bands, with or without implemented imperfection. The
comparison with simulation result using the Finite Element method indicates that
both models can simulate shear bands and strain localization when an initially weak
zone has been implemented, however, FE is not capable of building any shear band
starting from homogeneous conditions. As ABAQUS uses the weak formulation, the
equilibrium is not fulfilled for every single integration point, but for the whole problem.
Starting from a homogeneous field leads to a homogenous solution for the whole field
and for all all calculation steps. As a result, no shear bands can develop. SPARC uses
the strong formulation to solve the differential equations. Therefore, the equilibrium
is fulfilled at every single particle with a prescribed tolerance. SPARC is capable of
simulating shear bands even when the specimen has an initially homogeneous setup,
this is due to the numerical inaccuracy and error accumulation in the domain. However,
this corresponds the reality for experiments with homogeneous setup, that shear bands
still occur.

Simulations with different number of particles with SPARC have demonstrated that
the density of particles also plays a role in shape, thickness and orientation of shear
bands and the denser the particles, the better the shear bands can be reproduced in the
framework of SPARC.

Results of simulations with SPARC and FE with implemented imperfection and the
same number of particles or nodes, have shown that the inclination and shape of shear
band from both methods is comparable and almost similar. One can deduce that sim-
ulation of shear bands is not strongly dependent on the applied numerical method, but
mainly on the density of particles, mesh size, or the implemented constitutive method,
as discussed e.g. in Sect. 6 for constitutive models, developed for polar continuum.
The idea of using the velocity gradient and the stretching tensors in the framework of
SPARC, provides a more comprehensive structure for dealing with large deformations
such as strain localization in granular materials. Furthermore, it offers the advantage
that the stretching tensor can be directly used as an input of many constitutive models
such as hypoplasticity and barodesy. As for further numerical investigation of shear
bands, it is aimed to develop SPARC for saturated conditions and conduct the same
biaxial tests for hydromechanically coupled conditions and investigate the develop-
ment of shear bands for both dense and loose samples and to compare the results with
the experimental investigations on undrained biaxial tests.
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