# Impurity types, concentration influence hydraulic design

Klaus D. Kaufmann ILF Consulting Engineers Munich

Real  $CO_2$  streams those from  $CO_2$ -capture plants likely to contain impurities as opposed to

pure  $CO_2$  streams—will likely contain at least 95 mole %  $CO_2$  but will also contain impurities generated in the individual power plant and carbon capture-related facilities.

Теснмогоду

The first part of this article (OGJ, Apr. 12, 2010, pp. 39) described in detail methods for determining steadystate pressure and temperature profiles of such CO<sub>2</sub> streams. The conclusion, presented here, addresses the expected influence of impurities present in real  $CO_2$  streams on the hydraulic pipeline layout and presents an overview



diagram enabling a first estimation of the most economic pipeline diameter, depending on intended  $CO_2$  throughput rates.

# Background

Type and concentration of the impurity components contained in the  $CO_2$  stream

will influence the hydraulic design of a pipeline system transporting real CO<sub>2</sub> streams, which depend on a series of considerations like:

• Power plant fuel type and carboncapture technology.

• Health-related safety considerations referring to the maximum allowable concentration of toxic  $CO_2$  stream components (e.g.,  $H_2S$ ,  $SO_2$ ) in hypothetical leak situations.

• Pipeline material-related aspects to limit corrosion (e.g., limitation of H<sub>2</sub>O concentration) or other pipe-material related adverse effects like hydrogen embrittlement

Table 2

| <b>LU<sub>2</sub> CAPTURE PROC</b> | SES FOR POWER GENERATION Table 1                                                                                                                      |                                    |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|
| Process                            | Description                                                                                                                                           |                                    |  |  |
| Postcombustion                     | Separated from power plant flue gases by other process.                                                                                               | amine or                           |  |  |
| Precombustion                      | Integrated gasification combined cycle gets synthesis gas, gas shift reaction to $H_2 + 0$ ration of $CO_2$ and $H_2$ , combustion of $H_2$ in plant. | CO <sub>2</sub> , sepa-<br>1 power |  |  |
| Oxy-fuel systems                   | Combustion of fuel with almost pure oxyg flue gas consisting mainly of CO <sub>2</sub> .                                                              | ien, recycle                       |  |  |

#### EXPECTED IMPURITY CONCENTRATION IN DRIED CO<sub>2</sub> STREAMS

| Component                                | Postcom-<br>bustion | oal-fired plants –<br>Precom-<br>bustion | Oxy-<br>fuel | Postcom-<br>bustion | as-fired plants<br>Precom-<br>bustion | S — Oxy-<br>fuel |  |
|------------------------------------------|---------------------|------------------------------------------|--------------|---------------------|---------------------------------------|------------------|--|
| component                                |                     |                                          |              |                     |                                       |                  |  |
| SO.                                      | < 0.01              | 0                                        | 0.5          | < 0.01              | 0                                     | < 0.01           |  |
| SO <sub>2</sub><br>NO <sup>2</sup>       | < 0.01              | Ō                                        | 0.01         | < 0.01              | Ő                                     | < 0.01           |  |
| H <sub>2</sub> S<br>H <sub>2</sub><br>CO | 0                   | 0.01-0.6                                 | 0            | 0                   | < 0.01                                | 0                |  |
| H                                        | Ō                   | 0.8-2.0                                  | Ō            | 0                   | 1.0                                   | 0                |  |
| CÓ                                       | 0                   | 0.03-0.4                                 | Ō            | Ő                   | 0.04                                  | 0                |  |
| CH,                                      | 0                   | 0.01                                     | Ō            | 0                   | 2.0                                   | 0                |  |
| N <sub>2</sub> /År/O <sub>2</sub>        | 0.01                | 0.03-0.6                                 | 3.7          | 0.01                | 1.3                                   | 4.1              |  |
| Total                                    | 0.01                | 2.1-2.7                                  | 4.2          | 0.01                | 4.4                                   | 4.1              |  |

of the pipeline steel, hydrogen-induced cracking, or sulfide stress cracking (which can be mitigated by appropri-

ate pipe material selection).

• Storage requirements (e.g., concentration limitation of oxygen and noncondensable

components).

**CO, PIPELINES-**

Conclusion

• Limitation of the amount of economically usable additional components transported (e.g., thermal usage of hydrogen or methane).

• Limitation of the amount of additional components in order to minimize friction pressure losses or losses of pipeline transportation capacity.

• Limitation of the concentration of additional components in order to minimize the amount of energy required in the pipeline system's compression and transportation stations.

# Impurity sources

The process or power plant application for combustion of the primary fossil fuels—coal, oil, gas, biomass, or a mixture of these—determines the  $CO_2$ capture techniques, which for power plant applications are characterized commonly as precombustion, postcombustion, or oxy-fuel processes (Table 1).

The processes mentioned may generate components appearing at different combinations and concentrations in the CO<sub>2</sub> streams captured, H<sub>2</sub>S and SO<sub>2</sub> resulting from the fuel's sulfur content. Table 2 gives an overview on the concentrations of the impurities expected in dried CO<sub>2</sub> streams.<sup>1</sup>

While the stream compositions giv-

Oil & Gas Journal / Apr. 19, 2010

00

en in Table 2 reflect the aspects of the capture processes, Table 3 shows the DYNAMIS specification<sup>2</sup> taking safety and toxicity limits into account.

The DYNAMIS report<sup>2</sup> also states, however, that this recommendation covers a capture process applied to coproduction of electricity and hydrogen and, further, care must be used in applying this quality recommendation. to other types of capture processes.

### Impurity influence

Estimating the influence of impurities on the pressure and temperature

profiles of a CO. pipeline system and on the power demand of the initial compression stations and potentially installed intermediate transportation station(s) requires estimating the influence of impurities on vapor pressurecritical pressure, density, viscosity, specific heat capac-

in

1)

010

ity, Joule-Thomson coefficient, and isentropic p-T-relationship.

The published data on the influence of impurities on CO<sub>2</sub> stream properties, the applicability of existing equations of state, and the applicable mixing rules and parameters data are, however, limited.34

The Polytec report provides example estimates for pressure and temperaturedependent density, dynamic viscosity, and vapor pressure values.3 The REF-PROP program from National Institute of Standards and Technology obtained the data used by the report, referring to the statement by NIST that the program uses the most accurate equations of state currently available. The report<sup>3</sup> comprises a compilation of available measurement data on pressure vs. temperature and vapor-liquid equilibrium data of mixtures of CO, with other components.

Table 4 presents the influence of

# **CO**, STREAM SPECIFICATIONS, DYNAMIS

| Component                                            | Aquifer                            | Enhanced oil<br>recovery | Remark, limitation <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|------------------------------------------------------|------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| H <sub>2</sub> 0                                     | 500 ppm                            |                          | Technical aspects <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| H <sub>2</sub> S<br>CO                               | 200 ppm<br>2,000 ppm               |                          | Health, safety considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| co                                                   |                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| O₂<br>CH₄                                            | <4 vol %                           | 100-1,000 ppm            | Technical aspects <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CH,                                                  | <4 vol %                           | <2 vol %                 | Reference to ENCAP project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| N <sub>2</sub>                                       | <4 vol %, all noncondensable gases |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Ar                                                   |                                    |                          | and the second se |  |
| Η,                                                   |                                    |                          | Reduction recommended <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| SO,                                                  | 100 ppm                            |                          | Health, safety considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| H <sub>2</sub><br>SO <sub>2</sub><br>NO <sub>2</sub> | 100 ppm                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| CO,                                                  | >95.5%                             |                          | Balanced with other components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

Abridged remarks from DYNAMIS report. <sup>2</sup>Expected in the future to range near 250 ppm. <sup>3</sup>Range of EOR due to lack of practical experiments on  $O_2$  effects underground. <sup>4</sup>Due to energy content.

#### IMPURITY INFLUENCES AT 100 BAR, VARIABLE TEMPERATURE CO2 CO2 + CO2 + CO2 + CO2 + CO. + CO, + 100% 2% H,S Unit 2% CH 2% H. 2% N, 2% Ar 2% SO, Relative density deviation compared with 100% CO, 10° C. 20° C 1.6 2.0 2.8 -0.3 -0.5 0.0 -5.0 -2.6 -1.6 -2.7 -4.1 0.0 -41 -6.2 -4.2 6 -6.6 Relative dynamic viscosity deviation compared with 100% CO2 -6.8 -5.5 -5.4 -7.7 0.5 0.0 10° C. 20° C 30° C 10.4 -6.0 -11.810.7 0.0 CO. absolute vapor pressure, deviation compared with 100% CO. 10° C. bar 45.0 5.3 17.6 20° C. bar 57.3 5.1 13.7 9.8 8.9 6.3\* 8.3 7.9 4.3 -1.3 -1.7 -2.7 -0.4 -0.3 20° C. 30° C. bar 72.1 6.8 8.5 -0.4 \*Extrapolated value.

# SENSITIVITY CALCULATIONS VARYING INDIVIDUAL PROPERTIES ±10%

|                                            | Calculated pressure, temperature at pipeline end Absolute values Differences |                     |                  |                     |  |
|--------------------------------------------|------------------------------------------------------------------------------|---------------------|------------------|---------------------|--|
| Property variation                         | Pressure,<br>bar                                                             | Temperature,<br>°C. | Pressure,<br>bar | Temperature,<br>°C. |  |
| Base case<br>Density                       | 91.41                                                                        | 27.09               | -                | road the w          |  |
| 0.9                                        | 85.56<br>95.82                                                               | 26.62<br>27.40      | -5.85<br>4.41    | -0.47<br>0.31       |  |
| Kinematic viscosity                        |                                                                              |                     |                  |                     |  |
| 0.9<br>1.1<br>Specific heat capcity        | 91.51<br>91.31                                                               | 27.10<br>27.08      | 0.10<br>-0.10    | 0.01<br>-0.01       |  |
| 0.9<br>1.1                                 | 91.74<br>91.13                                                               | 26.44<br>27.66      | 0.33<br>0.28     | -0.65<br>0.57       |  |
| Joule-Thompson coefficient                 |                                                                              |                     |                  |                     |  |
| 0.9<br>1.1                                 | 91.14<br>91.66                                                               | 27.63<br>26.59      | -0.27<br>0.25    | 0.54<br>-0.50       |  |
| Isentropic dp/dt coefficient<br>0.9<br>1.1 | 91.34                                                                        | 27.20               | -0.07            | 0.11                |  |
| 1.1                                        | 91.48                                                                        | 26.98               | 0.07             | -0.11               |  |

impurities on density, viscosity, and vapor pressure of CO, streams at 100 bar with different temperatures, using an impurity concentration of 2%. These data were extracted graphically from the report's diagrams and are for illustration purpose only.

SO, is the only component increas-

ing stream density compared to pure CO<sub>2</sub>, the estimated density for this mixture is very uncertain since no mixture parameters were available. H<sub>S</sub> has a minimal impact on the fluid density while H, has a large impact.

Impurities typically will reduce dynamic viscosity (Table 4).

61

Table 3

Table 4

CO. +

2% 0.

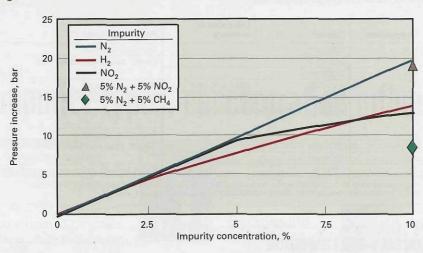
-2.3

-3.1 -5.2

-6.0

-6.3

-8.6


10.8

11.6 6.7

Table 5



TECHNOLOGY

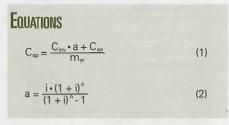


Impurities affect vapor pressure with the exception of  $H_2S$  and  $SO_2$  (Table 4). The values for  $CO_2$ - $SO_2$  mixture are very uncertain, since mixing parameters were estimated and not based on actual measurement data. The presence of impurities also implies the presence of a two-phase region.<sup>3</sup>

Table 4 shows, for example, for a temperature of 30° C. (near  $CO_2$ 's critical temperature ~31° C.) the vapor pressure of a  $CO_2$  mixture with 2% H<sub>2</sub> is about 8.5 bar higher than that of pure  $CO_2$ .

Literature addresses the influence of impurities on critical pressure.<sup>4</sup> Fig. 1 presents the relationships and shows variations of critical pressure of  $CO_2$  streams with different impurities.

Fig. 1 shows the increase of the critical pressure due to impurities is expected to remain moderate (<10 bar)


if type and concentration of impurities remain in the ranges estimated in Table 2.

# Fluid properties

Estimating the influence of impurities on the results of steady-state pressure and temperature profile calculations assumed modifications of relevant fluid properties of  $\pm 10\%$ . Table 5 shows the results of related calculations performed for the hypothetical  $CO_2$  transportation system.

Table 5 shows variations of the  $CO_2$  stream density due to impurities as representing a dominant factor in determining pressure losses along a pipeline system. Accurate determination of the  $CO_2$  stream density regarding the presence of impurities therefore represents the major hurdle for reliable prediction of hydraulic pressure and temperature profiles along a new pipeline system for captured  $CO_2$ .

The development of a new CO,



# MAIN INPUT DATA FOR RAW PIPELINE SYSTEM OPTIMIZATION Table 6

| Specific pipeline transportation cost                                                                                     | Unit                                 | Value                      |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|--|
| Basic process data:<br>Density, average<br>Kinematic viscosity, average<br>Pump motor efficiency<br>Annual operating time | kg/cu m<br>cst, sq mm/sec<br>%<br>hr | 770<br>0.08<br>75<br>8,322 |  |
| Specific cost:<br>Specific pipeline system cost<br>Specific energy cost                                                   | €/(in.*m)<br>€/Mw hr                 | 39.0<br>90.0               |  |
| Financial data:<br>Time period considered<br>Interest rate                                                                | years<br>%/year                      | 20<br>10                   |  |

pipeline system requires estimation of the types and concentration ranges of impurity components of the  $CO_2$ stream. Tables 1 and 2 estimates for this purpose depend on the technologies applied for power generation and carbon capture.

Fig. 1

Table 4 and Fig. 1 can estimate the critical pressure of the transported  $CO_2$  stream, defining the minimum operating pressure by considering the sufficient safety distance to the critical pressure.

Table 4 allows estimation of appropriate correction factors for density and viscosity of the  $CO_2$  stream and after selection of an appropriate pipeline diameter, first hydraulic pressure and temperature profiles can be determined applying equations for consecutive pipeline sections from the pipeline system inlet to the system outlet presented in Part 1 of this article.

This procedure provides a straightforward methodology to develop basic hydraulic pipeline profiles for new CO<sub>2</sub> transportation systems, respecting also the influence of impurities on the calculated pressure and temperature profiles.

#### Economic aspects

After defining minimum operating pressure to avoid two-phase flow, minimizing specific  $CO_2$  transportation costs, including initial investment cost and energy cost to compensate the friction losses, can estimate the optimum pipeline diameter.

Assuming a constant annual  $CO_2$  throughput over the life of the project,

the specific  $CO_2$  transportation cost  $C_{sp}$  can be estimated with initial investment cost  $C_{inv}$ , the annuity factor a, the annual energy cost  $C_{en}$ , and the annual mass  $m_{yr}$  transported (Equation 1).

Annuity factor a is calculated as a function of interest rate i and number of operating years n (Equation 2).

Initial investment cost C<sub>inv</sub> depends on parameters in-

Oil & Gas Journal / Apr. 19, 2010

62

# DIAMETER OPTIMIZATION

cluding pipe OD, design pressure, pipe WT, steel and coating delivery cost, and pipelaying cost. Estimates for a new CO<sub>2</sub> pipeline system in the 16-32 in. OD range with a design pressure of about 150 bar using typical western European costs of about €39/ (inch\*m) yield a price for a 24-in. OD pipeline of roughly 39\*24 €/m = €936/linear pipeline m.

Annual energy costs C<sub>en</sub> are based on a determina-

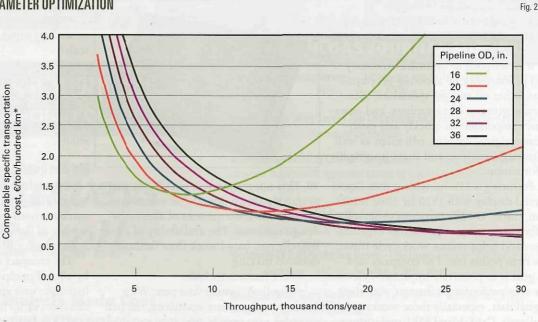

tion of diameter-dependent friction losses of the specific energy costs to operate the injection-transport stations and the annual operation time of the system.

Table 6 shows the main input data used for economic calculations, assuming the  $CO_2$  stream is transported in dense phase at a density of 770 kg/ cu m.

Fig. 2 shows the results of raw pipeline system optimization. For transportation of 10 million tons/year CO<sub>2</sub>, a 20-in. OD pipeline system would represent the optimum techno-economic solution. The calculated specific transportation cost equals about €1.2/ton at 100 km transportation distance. A 24-in. OD pipeline system could, however, be even more suitable if a future CO<sub>2</sub> throughput expansion were intended (e.g., to 15 million tons/year).

The specific transportation cost shown in Fig. 2, however, reflects only the friction-loss related cost along the pipeline route. The specific cost to compress the  $CO_2$  from the capture pressure level to the dense phase has to be added separately to the specific transportation cost.

Oil & Gas Journal / Apr. 19, 2010



\*Initial compression in head station to 80 bar excluded. Inclusion adds about €9/ton energy cost, €2/ton annuity cost.

The specific shaft rated power demand for CO<sub>2</sub> compression assuming equal stage pressure ratios as well as isentropic and mechanical efficiencies of 0.80 and 0.90, respectively, is about 366 kJ/kg (1 bar/30° C. to 80 bar) and 21 kJ/kg (80 bar/40° C. to 130 bar). Estimates for the shaft rated power demand to compress 1,200 ton/hr CO<sub>2</sub> from 1 bar to 130 bar in the initial station measured about 122 + 7 = 129 Mw. Friction pressure losses inside the compressor station are not addressed.

Assumed specific shaft-rated energy cost of  $\notin$ 90/Mw-hr yields a resulting specific compression energy cost of about  $\notin$ 9.1/ton CO<sub>2</sub> (1-80 bar) and  $\notin$ 0.53/ton CO<sub>2</sub> (80-130 bar). Specific annuity cost of the injection compression station is about  $\notin$ 2/ton CO<sub>2</sub>.

The intermediate transport station's shaft-rated power demand to increase pressure to 128 bar from 88 bar is about 2.4 Mw, about 1.9% of the compression power demand of the initial station.

The curves shown in Fig. 2 provide only a rough indication of optimum diameter for a given annual  $CO_2$  throughput. Determining the optimum solution in each individual case requires more detailed calculations. **♦** 

#### References

1. "IPCC 2005: IPCC Special Report on Carbon Dioxide Capture and Storage; Prepared by Working Group III of the Intergovernmental Panel on Climate Change," Edited by Metz, B., Davidson, O., de Coninck, H.C., Loos, M., and Meyer, L.A., pp. 442, Cambridge University Press, Cambridge and New York, NY, 2005.

2. "DYNAMIS Project No. 019672: Towards Hydrogen and Electricity Production with Carbon Capture and Storage," D 3.1.3, DYNAMIS CO<sub>2</sub> quality recommendations, June 21, 2007.

3. Polytec Report No. POL-O-2007-138-A, "State-of-the-Art Overview of CO<sub>2</sub> Pipeline Transport with relevance to Offshore Pipelines," Jan. 8, 2008.

4. Seevam, P.N., Race, J.M., and Downie, M.J., "Carbon dioxide pipelines for sequestration in the UK: an engineering gap analysis," Journal of Pipeline Engineering, Vol. 6, No. 3, pp. 140-141, September 2007.